Initiation of mammalian protein synthesis: dynamic properties of the assembly process in vitro. 1983

B Erni, and T Staehelin

Binding of the Met-tRNAMetf . eIf-2 GTP complex to the 40 S ribosomal subunit is the first step in initiation of eukaryotic protein synthesis. The extent of binding and the stability of the complex are enhanced by initiation factors eIF-3 and eIF-4C, AUG and elevated magnesium concentration. The reversibility of reaction steps occurring during the assembly of the initiation complex is measured as the rate of Met-tRNAMetf exchange in the initiation complex and its intermediates. This rate progressively decreases and Met-tRNAMetf binding becomes irreversible upon binding of mRNA. The association of the 40 S Met-tRNAMetf mRNA initiation complex with the 60 S ribosomal subunit is again reversible as long as elongation does not occur.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Erni, and T Staehelin
February 1971, Nature: New biology,
B Erni, and T Staehelin
May 1986, The Biochemical journal,
B Erni, and T Staehelin
August 1976, The Journal of investigative dermatology,
B Erni, and T Staehelin
January 1981, Progress in nucleic acid research and molecular biology,
B Erni, and T Staehelin
January 2017, Cell and tissue research,
B Erni, and T Staehelin
January 1980, FEBS letters,
B Erni, and T Staehelin
January 1966, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!