The kinetics of thymine dimer excision in ultraviolet-irradiated human cells. 1978

U K Ehmann, and K H Cook, and E C Friedberg

We have investigated the kinetics of the loss of thymine dimers from the acid-insoluble fraction of several ultraviolet (UV)-irradiated cultured human cell lines. Our results show that UV fluences between 10 and 40 J/m2 produce an average of 21-85 x 10(5) thymine dimers per cell and an eventual maximal loss per cell of 12-20 x 10(5) thymine dimers. The time for half-maximal loss of dimers ranged from 12-22 h after UV irradiation. In contrast, the time for half-maximal repair synthesis of DNA measured by autoradiography was 4.5 h. This figure agrees well with reported half-maximal repair synthesis times, which range from 0.5 to 3.6 h based on our analysis. The discrepancy in the kinetics of the loss of thymine dimers from DNA and repair synthesis is discussed in terms of possible molecular mechanisms of thymine dimer excision in vivo and in terms of possible experimental artifacts.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

U K Ehmann, and K H Cook, and E C Friedberg
November 1971, Photochemistry and photobiology,
U K Ehmann, and K H Cook, and E C Friedberg
January 1975, Basic life sciences,
U K Ehmann, and K H Cook, and E C Friedberg
June 1982, Radiation research,
U K Ehmann, and K H Cook, and E C Friedberg
January 1974, Folia microbiologica,
U K Ehmann, and K H Cook, and E C Friedberg
April 1965, Radiation research,
U K Ehmann, and K H Cook, and E C Friedberg
June 1970, Photochemistry and photobiology,
U K Ehmann, and K H Cook, and E C Friedberg
July 1964, Biochemical and biophysical research communications,
U K Ehmann, and K H Cook, and E C Friedberg
April 1975, Biochimica et biophysica acta,
Copied contents to your clipboard!