Biochemical and genetical characterization of a fiber-defective temperature-sensitive mutant of type 2 adenovirus. 1983

M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger

The adenovirus type 2 fiber mutant H2 ts 125 synthesized an unstable, temperature-sensitive fiber polypeptide with an apparent mol. wt. smaller by 2500 than the wild-type (62 K). The polypeptide of 59.5 K was found to be stable at the permissive temperature (33 degrees C). H2 ts 125 fiber synthesized in reticulocyte lysates had the same apparent mol. wt. of 59.5 K as the mutant fiber produced in vivo. Neither structural nor functional differences between wild-type and mutant fibers were detected in the N-terminal and C-terminal sequences, excluding the occurrence of a new initiation or termination codon. Restriction analysis of H2 ts 125 DNA also ruled out the hypothesis of a deletion mutant. The 59.5 K mutant fiber unit was normally glycosyated, N-acetylated, assembled into 6S oligomeric fiber and incorporated into virions. DNA sequencing of the H2 ts 125 fiber gene revealed two point mutations at nucleotides 3970 (C*TT leads to T*TT) and 4958 (GC*T leads to GT*T), corresponding to two amino acid changes at positions 105 and 434, respectively. The 105 mutation consisted of a conservative change Leu leads to Phe; the 434 interchange was Ala leads to Val, usually considered as nonconservative. The possibility of a donor site for splicing created by the mutation at codon GTT was eliminated on the basis of S1 nuclease analysis data. All these results suggested that either one or both mutations concerned highly organized domain(s) of the fiber polypeptide chain, resulting in aberrant mobility in SDS-polyacrylamide gels and temperature-sensitivity.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles

Related Publications

M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
August 1977, Virology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
January 1983, Intervirology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
January 1980, Journal of virology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
May 1979, Canadian journal of microbiology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
March 1977, Journal of virology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
August 1984, The Journal of general virology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
October 2009, Virology journal,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
May 1988, Acta virologica,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
August 1976, Journal of virology,
M L Boudin, and M Rigolet, and P Lemay, and F Galibert, and P Boulanger
June 1982, Journal of virology,
Copied contents to your clipboard!