Comparative effects of nifedipine, verapamil, and diltiazem on experimental pulmonary hypertension. 1983

T E Young, and L J Lundquist, and E Chesler, and E K Weir

The role of calcium-channel blocking agents in the treatment of pulmonary hypertension is not well defined. Consequently, the effects of diltiazem, nifedipine, and verapamil were compared in 3 groups of anesthetized dogs (n = 6 for each group). In each group, normoxic hemodynamic variables were recorded before and after increasing doses of diltiazem, nifedipine, and verapamil (5 X 10(-8) M/kg, low; 10(-7) M/kg, medium; and 10(-6) M/kg, high dose; given intravenously over 2 minutes). In addition, the effect of these doses on the pulmonary pressor responses to hypoxia (fractional inspired oxygen concentration [FIO2] 12%) and prostaglandin F2 alpha (PGF2 alpha) (5 micrograms/kg/min, intravenously for 4 minutes) was measured. During normoxia, high-dose nifedipine and verapamil decreased mean aortic pressure and systemic vascular resistance while increasing cardiac output in all dogs in both groups (p less than 0.01). Pulmonary vascular resistance, however, remained unchanged. High-dose diltiazem did not significantly alter cardiac output or pulmonary vascular resistance. During acute hypoxic pulmonary hypertension, verapamil decreased cardiac output by 30% (p less than 0.01) without appreciably altering pulmonary arterial pressure; thus pulmonary vascular resistance increased slightly (4.9 +/- 0.6 to 6.4 +/- 1.0 mm Hg/liter/min, difference not significant [NS]). Nifedipine decreased hypoxic pulmonary vascular resistance to normoxic values (p less than 0.01). Cardiac output increased 71% while pulmonary arterial pressure remained unchanged. Diltiazem administration produced no change in hypoxic pulmonary hemodynamic variables. The responses to diltiazem, nifedipine, and verapamil during acute pulmonary vasoconstriction induced by PGF2 alpha were similar to those induced by hypoxia. After verapamil, pulmonary vascular resistance tended to increase (7.3 +/- 1.3 to 8.1 +/- 1.4 mm Hg/liter/min, NS). Nifedipine, however, completely blocked pulmonary vasoconstriction by decreasing pulmonary vascular resistance to pre-PGF2 alpha levels (p less than 0.01). This was accompanied by a 157% increase in cardiac output and only a small increase in pulmonary arterial pressure (7 mm Hg). Again, diltiazem produced no change in pulmonary hemodynamic variables. In these acute studies, nifedipine appeared to be a more effective pulmonary vasodilator than verapamil or diltiazem.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D008297 Male Males
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011669 Pulmonary Wedge Pressure The blood pressure as recorded after wedging a CATHETER in a small PULMONARY ARTERY; believed to reflect the PRESSURE in the pulmonary CAPILLARIES. Pulmonary Artery Wedge Pressure,Pulmonary Capillary Wedge Pressure,Pulmonary Venous Wedge Pressure,Wedge Pressure,Pressure, Pulmonary Wedge,Pressures, Pulmonary Wedge,Pulmonary Wedge Pressures,Wedge Pressure, Pulmonary,Wedge Pressures, Pulmonary,Pressure, Wedge,Pressures, Wedge,Wedge Pressures
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D004110 Diltiazem A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions. Aldizem,CRD-401,Cardil,Cardizem,Dilacor,Dilacor XR,Dilren,Diltiazem Hydrochloride,Diltiazem Malate,Dilzem,Tiazac,CRD 401,CRD401
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

T E Young, and L J Lundquist, and E Chesler, and E K Weir
February 1982, The American journal of cardiology,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
January 1988, Archives internationales de pharmacodynamie et de therapie,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
May 1988, British journal of clinical pharmacology,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
April 1985, The Journal of pharmacology and experimental therapeutics,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
December 1980, The American journal of cardiology,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
September 1987, International journal of clinical pharmacology, therapy, and toxicology,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
July 1984, Anesthesiology,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
June 1983, No shinkei geka. Neurological surgery,
T E Young, and L J Lundquist, and E Chesler, and E K Weir
January 1985, Indian journal of experimental biology,
Copied contents to your clipboard!