Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes. 1983

P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin

Cell surface and cryptic insulin receptors were solubilized from the particulate fraction of murine 3T3-L1 adipocytes with buffer containing 1% Triton X-100. Solubilized receptors were affinity crosslinked with 125I-labeled insulin and disuccinimidyl suberate and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography after specific immunoprecipitation. Two insulin-binding polypeptides were identified: the more abundant protein had a Mr of 130,000, corresponding to the size of the hormone-binding subunit of insulin receptors on the surface of target cells; the second polypeptide exhibited a Mr of 200,000 and appears to be a component of the latent pool because it was unaffected when 3T3-L1 adipocytes were exposed to trypsin under conditions that result in a 95% reduction in cell surface insulin-binding activity and the loss of the Mr 130,000 polypeptide in crosslinking experiments. Unexpectedly, the population of Mr 200,000 molecules in intact cells was accessible for limited cleavage by chymotrypsin, yielding a Mr 195,000 insulin-binding polypeptide. When 3T3-L1 adipocytes received a 15-min pulse of [35S]methionine, the predominant immunoprecipitated polypeptide had a Mr of 180,000. During a 1.5-hr chase, radioactivity in the Mr 180,000 species rapidly declined while the latent Mr 200,000 polypeptide became intensely labeled. After a 5-hr chase period, broad protein bands with Mrs of 130,000 and 90,000 were visualized as the major immunoprecipitated radioactive polypeptides. Thus, the Mr 180,000 species may be a very early biosynthetic precursor that may be subsequently processed to a Mr 200,000 form and one or both of the smaller receptor subunits at the cell surface.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D011498 Protein Precursors Precursors, Protein
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
May 1982, The Journal of biological chemistry,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
April 1979, Journal of cellular physiology,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
April 1982, The Journal of biological chemistry,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
January 2000, American journal of physiology. Endocrinology and metabolism,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
January 2000, The Journal of biological chemistry,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
March 1997, The Journal of biological chemistry,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
January 1994, The Journal of biological chemistry,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
February 1990, Proceedings of the National Academy of Sciences of the United States of America,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
January 2011, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
P J Deutsch, and C F Wan, and O M Rosen, and C S Rubin
May 1999, The American journal of physiology,
Copied contents to your clipboard!