Inhibition of human malignant melanoma colony-forming cells in vitro by prostaglandin A1. 1983

M D Bregman, and F L Meyskens

The direct effect of continuous exposure to prostaglandins on the cloning efficiency and proliferative capacity of human malignant melanoma colony-forming cells in soft agar was evaluated. Prostaglandin A1 (PGA1) and prostaglandin E1 (PGE1) effected a dose-dependent inhibition of colony formation and proliferative capacity. PGA1 at a concentration of 5 microgram/ml reduced colony formation of cells from human melanoma cell strains C8054, C8130, and C822 by at least 85%. PGA1 also inhibited colony formation of cells obtained directly from biopsies of melanoma tissues from eight patients by greater than 70% at a concentration of 5 microgram/ml. A steep dose-response curve was evident by the little effect of PGA1 on colony formation at a concentration of 0.5 microgram/ml. The mean 50% inhibitory doses for PGA1 and PGE1 were 1.25 and 4.25 microgram/ml, respectively. Prostaglandin A2 was much less effective than PGA1 in inhibiting melanoma colony formation. The related prostaglandins (prostaglandin B1, prostaglandin F1 alpha, and prostaglandin E2 alpha) had little or no effect on colony formation. Overall, these results suggested that the presence of a carbonyl group at position 9 of the cyclopentane ring may be required for inhibitory activity as prostaglandins of the A and E series inhibited human melanoma cell growth. PGA1 and PGE1 did not effect a rise in cyclic adenosine 3':5'-monophosphate levels in C8054 and C8130 cells. However, while alpha-melanocyte-stimulating hormone and prostaglandin F2 alpha did generate a rise in adenosine 3':5'-monophosphate levels in C8054 cells, these hormones had no effect on colony formation. These results are consistent with the notion that the PGA1 and PGE1 inhibition of melanoma colony-forming cells occurs via a noncyclic nucleotide mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D009074 Melanocyte-Stimulating Hormones Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS. MSH,Melanocyte Stimulating Hormone,Melanocyte-Stimulating Hormone,Melanophore Stimulating Hormone,Melanotropin,MSH (Melanocyte-Stimulating Hormones),Melanophore-Stimulating Hormone,Hormone, Melanocyte Stimulating,Hormone, Melanocyte-Stimulating,Hormone, Melanophore Stimulating,Melanocyte Stimulating Hormones,Stimulating Hormone, Melanocyte,Stimulating Hormone, Melanophore
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000527 Alprostadil A potent vasodilator agent that increases peripheral blood flow. PGE1,Prostaglandin E1,Caverject,Edex,Lipo-PGE1,Minprog,Muse,PGE1alpha,Prostaglandin E1alpha,Prostavasin,Prostin VR,Prostine VR,Sugiran,Vasaprostan,Viridal,Lipo PGE1

Related Publications

M D Bregman, and F L Meyskens
June 1975, British journal of cancer,
M D Bregman, and F L Meyskens
January 1988, Progress in clinical and biological research,
M D Bregman, and F L Meyskens
June 1983, Cancer research,
M D Bregman, and F L Meyskens
March 1973, Journal of the National Cancer Institute,
M D Bregman, and F L Meyskens
January 1980, Virchows Archiv. B, Cell pathology including molecular pathology,
M D Bregman, and F L Meyskens
December 1983, Investigative ophthalmology & visual science,
M D Bregman, and F L Meyskens
October 1979, Cancer research,
M D Bregman, and F L Meyskens
December 1981, British journal of cancer,
Copied contents to your clipboard!