Phosphorylation activates the insulin receptor tyrosine protein kinase. 1983

O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb

Preparations of insulin receptor from cultured 3T3-L1 adipocytes and human placenta previously was found to catalyze the phosphorylation of the 90,000-dalton component of the insulin receptor on tyrosine residues. This insulin-dependent phosphorylation has now been shown to coincide with the generation of an activated, insulin-independent, receptor protein kinase. Activation is dependent upon ATP, divalent cations (Mg2+ and Mn2+), and insulin (half-maximal activation occurs at 6-8 nM insulin). The time required for activation is consistent with that needed for insulin-dependent self-phosphorylation of the receptor present in eluates from wheat germ lectin-agarose columns and in preparations of affinity-purified placental receptor. Activation proceeds unabated in the presence of soybean trypsin inhibitor at 0.1 mg/ml and the activated, insulin-independent, protein kinase sediments in 5-20% sucrose gradients at the same position as the unmodified receptor. Under steady-state conditions, the phosphorylated receptor binds insulin in the same fashion as the unmodified receptor. It is proposed that the self-phosphorylated form of the receptor is the insulin-activated protein kinase that catalyzes the phosphorylation of exogenous protein and peptide substrates. A corollary of this hypothesis is that enzymatic dephosphorylation may be essential for reversibly terminating the activity of the insulin-receptor protein kinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
April 1984, The Journal of biological chemistry,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
April 1986, The Journal of biological chemistry,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
April 1997, Biochemistry,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
April 1988, FEBS letters,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
June 1989, The Journal of biological chemistry,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
March 1995, The Journal of biological chemistry,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
February 2004, The Biochemical journal,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
January 1984, Biochimica et biophysica acta,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
January 1986, Annals of the New York Academy of Sciences,
O M Rosen, and R Herrera, and Y Olowe, and L M Petruzzelli, and M H Cobb
January 1994, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!