Solubilization and characterization of high-affinity [3H]serotonin binding sites from bovine cortical membranes. 1983

S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello

High-affinity [3H]serotonin binding activity has been solubilized from bovine cerebral cortical membranes by using Triton X-100, Tween-80, and octyl-beta-D-glucopyranoside. This mixture of detergents solubilizes the high-affinity [3H]serotonin binding activity present in crude membrane preparations with retention of 75-90% specific binding. The detergent mixture was chosen because it can easily be removed from the solubilized fraction by dialysis and polystyrene bead adsorption, thus permitting further purification and isolation of the binding sites. Saturation analysis reveals multiple components of high-affinity [3H]serotonin binding. In crude bovine cortical membranes, at least two binding components are present. A higher-affinity binding component, as defined from curvilinear Scatchard plots, has a Kd for [3H]serotonin of 1-3 nM, whereas a lower-affinity component has a Kd of 10-20 nM. In the solubilized preparation, only a single class of binding sites is apparent, with a Kd of 50-100 nM. Removal of detergents by dialysis and polystyrene bead adsorption results in restoration of the curvilinear Scatchard plot with apparent Kds similar to those observed in crude membrane preparations and with increased Bmax values for each component. [3H]Serotonin binding activity in the solubilized preparation is stable to Sephacryl S-300 column chromatography and to glycerol gradient sedimentation. Saturation analysis of the peak binding fractions from both these procedures once again yields curvilinear Scatchard plots, indicating that the multiple high-affinity binding components are preserved and migrate together. The molecular weight, Stokes radius, and frictional coefficient of the binding site(s) have been calculated. After detergent removal the solubilized material shows many of the characteristics usually attributed to S1 receptors, such as high affinity for [3H]serotonin and its analogs and low affinity for serotonin antagonists.

UI MeSH Term Description Entries
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
January 1985, Journal de pharmacologie,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
November 1985, European journal of biochemistry,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
May 1991, The Journal of pharmacology and experimental therapeutics,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
October 1990, The Journal of biological chemistry,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
January 1982, Journal of cardiovascular pharmacology,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
January 1987, Brain research,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
October 1994, Neurochemical research,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
October 1992, Neurochemical research,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
July 1985, British journal of pharmacology,
S R VandenBerg, and R L Allgren, and R D Todd, and R D Ciaranello
February 1980, Brain research,
Copied contents to your clipboard!