Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. 1983

T Suda, and J Suda, and M Ogawa

By using a micromanipulator, single cells from blast cell colonies were individually transferred to 35-mm culture dishes for secondary colony formation. When individual colonies appeared to be mature, they were examined for cellular composition by May-Grunwald-Giemsa staining and were replated for determination of unexpressed hemopoietic potentials. We describe here a total of 50 mixed hemopoietic colonies. Seven types of colonies consisting of cells in two different lineages were seen--i.e., neutrophil-macrophage, neutrophil-eosinophil, macrophage-eosinophil, macrophage-mast cell, macrophage-megakaryocyte, macrophage-erythrocyte, and erythrocyte-megakaryocyte. Six types of colonies revealed three cell lineages--i.e., neutrophil-macrophage-eosinophil, neutrophil-macrophage-mast cell, neutrophil-macrophage-erythrocyte, macrophage-mast cell-erythrocyte, neutrophil-macrophage-megakaryocyte, and neutrophil-erythrocyte-megakaryocyte lineages. In addition, multilineage colonies expressing terminal differentiation in varying combinations of more than three lineages were present. Replating studies confirmed that the progenitors for many of these colonies are terminally committed to differentiation only in the lineages disclosed by staining. This study, thus, provides a proof for the single-cell origin of mouse hemopoietic colonies expressing various combinations of cell lineages. It also supports the hypothesis that the differentiation of multipotential hemopoietic progenitors is through progressive and stochastic restriction in cell lineages.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005260 Female Females
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T Suda, and J Suda, and M Ogawa
December 1984, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
T Suda, and J Suda, and M Ogawa
February 1976, Blood,
T Suda, and J Suda, and M Ogawa
February 1969, Journal of cellular physiology,
T Suda, and J Suda, and M Ogawa
October 1988, Blut,
T Suda, and J Suda, and M Ogawa
October 1993, Leukemia,
T Suda, and J Suda, and M Ogawa
February 1980, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
T Suda, and J Suda, and M Ogawa
November 1984, The American journal of pathology,
T Suda, and J Suda, and M Ogawa
January 1973, Advances in experimental medicine and biology,
Copied contents to your clipboard!