Structure-specific model of hemoglobin cooperativity. 1983

A W Lee, and M Karplus

A generalization of the Szabo-Karplus statistical mechanical model for hemoglobin cooperativity is formulated. The model fits the available thermodynamic and spectroscopic data with assumptions that are consistent with structural results and empirical energy function calculations. It provides a mechanism of hemoglobin cooperativity that is a generalization of the proposals of Monod, Wyman, and Changeux and of Perutz. The role of nonsalt-bridge related sources of constraints on ligand affinity and the mode of salt-bridge coupling to tertiary-quaternary structural changes are examined within the framework of the model. Analysis of proton release data for a range of pH values indicates that a pH-independent part of cooperativity must be present. The pH dependence of the first and last Adair constants point to partial linkage of salt bridges to ligation in the deoxy state and to a destabilized intra-beta-chain salt bridge in the unliganded oxy state.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

A W Lee, and M Karplus
February 1979, Biophysical journal,
A W Lee, and M Karplus
January 2018, Current protein & peptide science,
A W Lee, and M Karplus
January 1974, Molecular biology, biochemistry, and biophysics,
A W Lee, and M Karplus
May 1975, Biochemistry,
A W Lee, and M Karplus
May 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A W Lee, and M Karplus
May 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A W Lee, and M Karplus
January 1972, Hamatologie und Bluttransfusion,
A W Lee, and M Karplus
May 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A W Lee, and M Karplus
January 2004, Methods in enzymology,
A W Lee, and M Karplus
January 1992, Science (New York, N.Y.),
Copied contents to your clipboard!