Synthetic leader peptide modulates secretion of proteins from microinjected Xenopus oocytes. 1983

R Koren, and Y Burstein, and H Soreq

To investigate the role of the leader peptide in modulating secretion from living cells, we injected a synthetic peptide into Xenopus oocytes. The peptide consisted of the NH2-terminal leader sequence of mouse immunoglobulin light chain precursor. We found that the leader peptide has two different roles in regulating secretion from the oocytes. First, it competitively inhibits the synthesis of secretory and membrane proteins but not of cytoplasmic proteins. The inhibition occurs both with oocyte proteins and with proteins directed by coinjected myeloma mRNA. The inhibition reaches a maximum 2 hr after injection and decays within 3 hr. It appears to be mediated through the cell membrane, because 125I-labeled leader peptide segregates into the membrane fraction of microinjected oocytes simultaneously with the interference with methionine incorporation. A second role of the microinjected leader peptide is to induce a rapid acceleration in the rate of export of secretory proteins from the oocyte. The maximal enhancement effect is obtained upon injection of 50 ng of leader peptide per oocyte. It is not merely due to the small size, negative charge, or hydrophobicity of the peptide, because enhanced secretion does not occur when glucagon, poly-L-glutamic acid, or Triton X-100 is injected. Furthermore, immunoreaction of the peptide with specific antibodies prior to microinjection prevents the accelerated export. Our observations indicate that in Xenopus oocytes, the leader peptide is involved in both translocation and later step(s) in the secretory pathway.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004527 Egg Proteins Proteins which are found in eggs (OVA) from any species. Egg Protein,Egg Shell Protein,Egg Shell Proteins,Egg White Protein,Egg White Proteins,Egg Yolk Protein,Egg Yolk Proteins,Ovum Protein,Ovum Proteins,Yolk Protein,Yolk Proteins,Protein, Egg,Protein, Egg Shell,Protein, Egg White,Protein, Egg Yolk,Protein, Ovum,Protein, Yolk,Proteins, Egg,Proteins, Egg Shell,Proteins, Egg White,Proteins, Egg Yolk,Proteins, Ovum,Proteins, Yolk,Shell Protein, Egg,Shell Proteins, Egg,White Protein, Egg,White Proteins, Egg,Yolk Protein, Egg,Yolk Proteins, Egg
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

R Koren, and Y Burstein, and H Soreq
January 1985, CRC critical reviews in biochemistry,
R Koren, and Y Burstein, and H Soreq
January 1991, Methods in cell biology,
R Koren, and Y Burstein, and H Soreq
January 1988, Experimental cell research,
R Koren, and Y Burstein, and H Soreq
July 1992, The Journal of cell biology,
R Koren, and Y Burstein, and H Soreq
December 1985, Molecular and cellular biology,
R Koren, and Y Burstein, and H Soreq
December 1979, Molecular biology reports,
R Koren, and Y Burstein, and H Soreq
November 1977, Biochemical and biophysical research communications,
R Koren, and Y Burstein, and H Soreq
January 1998, Methods in cell biology,
R Koren, and Y Burstein, and H Soreq
July 1981, Nucleic acids research,
R Koren, and Y Burstein, and H Soreq
August 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!