The effects of gallamine on field and dorsal root potentials produced by antidromic stimulation of motor fibres in the frog spinal cord. 1978

J Galindo, and P Rudomin

The effects of gallamine on the intraspinal field potentials and the dorsal root potentials produced by antidromic stimulation of motor fibres were studied in the isolated frog spinal cord preparation. After gallamine (10-(3) M), the duration of the negative field potential produced by antidromic activation of motoneurons (N1 response) was increased often without changing its amplitude. This resulted in an increased passive spread of the antidromic action potential towards the dorsal dendritic regions, where afferent fibres terminate. In the untreated spinal cord, stimulation of motor axons produced a late negative dorsal root potential (VR-DRP) which was depressed after gallamine administration. Abolition of the VR-DRP was frequently associated with the appearance of a short latency, conducted response, in the dorsal roots (EVR-DRP). The earliest component of the EVR-DRP had a latency ranging between 0.5 and 2.5 ms measured after the peak of the N1 response recorded at the motor nucleus. Such a brief latency of the EVR-DRP suggests that this response results from electrical interaction between motoneurons and afferent fibres. After gallamine, the primary afferent depolarization produced by orthodromic stimulation of sensory nerves facilitates the EVR-DRP without necessarily increasing the amplitude or duration of the N1 response. Also, gallamine appears to increase directly the excitability of the afferent fibre terminal arborizations. The nature of the electrical interaction between motoneuron dendrites and afferent fibre terminal arborizations is discussed in terms of two hypotheses: interaction by current flows and by electrical coupling.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005703 Gallamine Triethiodide A synthetic nondepolarizing blocking drug. The actions of gallamine triethiodide are similar to those of TUBOCURARINE, but this agent blocks the cardiac vagus and may cause sinus tachycardia and, occasionally, hypertension and increased cardiac output. It should be used cautiously in patients at risk from increased heart rate but may be preferred for patients with bradycardia. (From AMA Drug Evaluations Annual, 1992, p198) Gallamine,Gallamonium Iodide,Flaxedil,Gallamine Triethochloride,Gallamine Triethyl Iodide,Iodide, Gallamine Triethyl,Iodide, Gallamonium,Triethiodide, Gallamine,Triethochloride, Gallamine,Triethyl Iodide, Gallamine
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

J Galindo, and P Rudomin
May 1985, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
J Galindo, and P Rudomin
May 1971, Biulleten' eksperimental'noi biologii i meditsiny,
J Galindo, and P Rudomin
September 1990, Neuroscience letters,
J Galindo, and P Rudomin
May 1946, Journal of neurophysiology,
Copied contents to your clipboard!