Antagonism of Ca2+ and other actions of verapamil in guinea-pig isolated trachealis. 1984

R W Foster, and B I Okpalugo, and R C Small

In trachealis bathed by a K+-rich, Ca2+-free physiological salt solution, calcium chloride (CaCl2) at 0.01 to 10 mmol l-1 evoked concentration-dependent spasm. Verapamil (0.1 to 10 mumol l-1) was an effective antagonist of CaCl2. Spasm evoked by acetylcholine, histamine, potassium chloride (KCl) and tetraethylammonium (TEA) was studied in trachealis bathed by normal Krebs solution. Verapamil (0.1 to 10 mumol l-1) markedly suppressed spasm evoked by KCl and TEA. In contrast the actions of acetylcholine and histamine were much less affected by verapamil. Spasm evoked by prostaglandin E2 was studied in trachealis bathed by Krebs solution containing indomethacin (2.8 mumol l-1). Verapamil (0.1 to 10 mumol l-1) had little or no effect against prostaglandin E2-induced spasm. Verapamil (0.1 to 10 mumol l-1) had relatively little effect on the tone of trachealis bathed by normal Krebs solution. In contrast bathing in Krebs solution lacking CaCl2 caused almost complete tone loss. Extracellular electrophysiological recording showed that verapamil (10 mumol l-1) suppressed not only TEA-evoked spasm but also TEA-evoked slow waves and spike potentials. Verapamil also abolished the transient period of slow wave activity associated with the spasm evoked by KCl. Intracellular electrophysiological recording showed that TEA-induced spike activity was resistant to tetrodotoxin (3 mumol l-1). However, verapamil (10 mumol l-1) abolished the tetrodotoxin-resistant spikes without increasing the resting membrane potential. It is concluded that verapamil suppresses TEA- or KCl-induced spasm, slow waves or spikes by inhibition of Ca2+ influx. Spasm evoked by acetylcholine, histamine and prostaglandin E2 depends on mechanisms for increasing the cytoplasmic concentration of free Ca2+ which are resistant to verapamil. The failure of verapamil markedly to depress tissue tone is consistent with the proposal that tone results from the activity of endogenous prostaglandins.

UI MeSH Term Description Entries
D008297 Male Males
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

R W Foster, and B I Okpalugo, and R C Small
May 1989, British journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
November 1989, British journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
June 1993, European journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
July 1985, The Journal of pharmacy and pharmacology,
R W Foster, and B I Okpalugo, and R C Small
September 1984, British journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
May 1993, European journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
April 1985, British journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
December 1985, British journal of pharmacology,
R W Foster, and B I Okpalugo, and R C Small
January 1986, Proceedings of the Western Pharmacology Society,
R W Foster, and B I Okpalugo, and R C Small
January 1986, British journal of pharmacology,
Copied contents to your clipboard!