Lipid fluidity of the individual hemileaflets of human erythrocyte membranes. 1983

D Schachter, and R E Abbott, and U Cogan, and M Flamm

The impermeant fluorescent probes (MIMAR reagents) described here permit the assessment of the lipid fluidity of individual membrane hemileaflets. They should also prove useful for examining the outer hemileaflets of the plasma membranes of intact cells. The observations, thus far, that normal human erythrocyte membranes have a characteristic asymmetry of fluidity, with the outer leaflet more fluid, correspond to prior findings with Mycoplasma, Newcastle Disease viral envelopes, and mouse LM cells. Hence, it is possible that the pattern is quite general in biological membranes. The particular lipid and protein components of the human-erythrocyte membrane that underly the fluidity asymmetry are unknown. The increased content of phosphatidylcholine in the outer leaflet and of the anionic phospholipids in the inner leaflet would be consonant with the fluidity difference. On the other hand, sphingomyelin, which tends to decrease fluidity, is localized mainly in the outer leaflet. Unknown at present is whether the cholesterol content of the two leaflets differs. From the results reported above, it is tempting to speculate that exogenously added cholesterol tends to localize in the outer leaflet, normally the more fluid leaflet, whereas endogenous cholesterol is more readily removed from the inner leaflet. This suggests, but clearly does not establish, that in the normal erythrocyte the cholesterol content of the inner leaflet exceeds that of the outer. Lastly, integral membrane proteins are expected to decrease lipid fluidity, and the usual pattern seen on freeze-fracture of large numbers of intra-membranous particles on the cytoplasmic face may signify a greater influence of protein in the inner leaflet. The hypothesis that perturbations of the fluidity of a given hemileaflet influence the membrane proteins (and their associated functions) in that leaflet is well-supported by the evidence described above. On the other hand, we understand less well the mechanisms by which lipid fluidity influences the proteins. For example, the decrease in sulfhydryl group reactivity of spectrin, actin, and Band 3 owing to cholesterol depletion (Table 7) may be due to a physical displacement of these proteins, as suggested by Borochov and Shinitzky. Why then does the reactivity of glyceraldehyde-phosphate dehydrogenase sulfhydryl groups increase under these conditions? There remains much to learn about membrane molecular mechanics and lipid-protein interactions. In such studies the impermeant MIMAR probes described here should prove useful.

UI MeSH Term Description Entries
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011721 Pyrenes A group of condensed ring hydrocarbons.
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

D Schachter, and R E Abbott, and U Cogan, and M Flamm
June 1998, Biochemistry and molecular biology international,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
June 1985, The Journal of clinical endocrinology and metabolism,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
March 1993, International journal of radiation biology,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
July 1997, Biochemistry and molecular biology international,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
January 1994, Biochemistry and molecular biology international,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
July 1991, Biochemistry international,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
December 1991, Shi yan sheng wu xue bao,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
September 1984, Biochemistry,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
September 1987, International journal of radiation biology and related studies in physics, chemistry, and medicine,
D Schachter, and R E Abbott, and U Cogan, and M Flamm
February 1982, Biochemical Society transactions,
Copied contents to your clipboard!