Oxygen-mediated damage of microsomal cytochrome P-450 enzymes in cultured leydig cells. Role in steroidogenic desensitization. 1984

P G Quinn, and A H Payne

Cultured Leydig cells exhibited time-dependent decreases in the microsomal cytochrome P-450 enzyme activities, 17 alpha-hydroxylase and C17-20 lyase when maintained under standard culture conditions (95% air, 5% CO2). Inclusion of the hydroxyl radical scavenger dimethyl sulfoxide in the culture medium, or the reduction of oxygen tension from 19 to 1% O2 was effective in preserving these enzyme activities and the combined effects of low O2 and dimethyl sulfoxide were synergistic. Leydig cells in culture were treated with 1 mM 8-Br-cAMP to induce steroidogenic desensitization which resulted in greater decreases in 17 alpha-hydroxylase and C17-20 lyase activities, as well as a diminished capacity to produce testosterone in response to subsequent acute stimulation with 8-Br-cAMP. Reduction of the oxygen tension from 19 to 1% O2 prevented this enhanced loss of microsomal P-450 activities in desensitized Leydig cells. The activity of delta 5-3 beta-hydroxysteroid dehydrogenase-isomerase, a microsomal enzyme which is not a P-450 enzyme, was stable in cultures of both control and desensitized Leydig cells under all culture conditions. These data are consistent with the hypothesis that oxygen-mediated damage is responsible for the time-dependent decrease in 17 alpha-hydroxylase and C17-20 lyase activities of control Leydig cells, and is the mechanism by which these microsomal P-450 activities are further decreased in desensitized Leydig cells. Desensitized Leydig cells exhibited a 50 and 70% decrease at 24 and 48 h, respectively, in their ability to produce testosterone in response to subsequent acute stimulation with 8-Br-cAMP, regardless of the culture conditions. Since desensitized Leydig cells cultured at 1% O2 showed no greater loss of enzyme activity than did controls, loss of microsomal P-450 activities is not the cause of the diminished testosterone biosynthetic capacity of desensitized Leydig cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D000446 Aldehyde-Lyases Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2. Aldolases,Aldehyde Lyases
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P G Quinn, and A H Payne
January 1989, Annual review of pharmacology and toxicology,
P G Quinn, and A H Payne
December 1981, American journal of obstetrics and gynecology,
P G Quinn, and A H Payne
July 1990, European journal of biochemistry,
P G Quinn, and A H Payne
January 1975, Advances in experimental medicine and biology,
P G Quinn, and A H Payne
January 1990, Duodecim; laaketieteellinen aikakauskirja,
Copied contents to your clipboard!