Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. 1984

U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg

Low density lipoprotein (LDL) incubated with cultured endothelial cells from rabbit aorta or human umbilical vein is altered in several ways (EC-modified): (i) It is degraded by macrophages much faster than LDL similarly incubated in the absence of cells or incubated with fibroblasts. (ii) Its electrophoretic mobility is increased. (iii) Its density is increased. We report here that antioxidants completely prevent these changes. We also report that these changes do not take place if transition metals in the medium are chelated with EDTA. During EC-modification as much as 40% of the LDL phosphatidylcholine is degraded to lysophosphatidylcholine by a phospholipase A2-like activity. When incubation conditions in the absence of cells were selected to favor oxidation--for example, by extending the time of incubation of LDL at low concentrations, or by increasing the Cu2+ concentration--LDL underwent changes very similar to those occurring in the presence of cells, including degradation of phosphatidylcholine. Hence, some phospholipase activity appears to be associated with the isolated LDL used in these studies. The results suggest a complex process in which endothelial cells modify LDL by mechanisms involving generation of free radicals and action of phospholipase (s).

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008244 Lysophosphatidylcholines Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties. Lysolecithin,Lysolecithins,Lysophosphatidylcholine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
January 1988, Basic life sciences,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
March 1986, Revista espanola de fisiologia,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
January 1986, Biochimica et biophysica acta,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
April 2002, Virchows Archiv : an international journal of pathology,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
September 2004, Biological chemistry,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
August 1983, Journal of lipid research,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
September 1998, British journal of biomedical science,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
January 1987, Free radical research communications,
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
February 1999, Lancet (London, England),
U P Steinbrecher, and S Parthasarathy, and D S Leake, and J L Witztum, and D Steinberg
January 1992, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!