Kinetic studies on the activation of human factor X. The role of metal ions on the reaction catalyzed by the venom coagulant protein of Viper russelli. 1978

S Morris, and F A Robey, and D P Kosow

The effect of Ca2+, Mg2+, and Mn2+ on the initial rate of activation of human Factor X by the venom coagulant protein of Vipera russelli has been investigated. Neither Mg2+ nor Mn2+ alone support the reaction. Ca2+ is an essential activator and exhibits cooperative kinetics. Both Mg2+ and Mn2+ enhance the reaction cooperatively when Ca2+ is present at suboptimal concentrations. Similarly, Ca2+ quenches the intrinsic fluorescence of human Factor X in a cooperative manner. While neither Mg2+ nor Mn2+ by themselves affect the fluorescence of human Factor X, they decrease the cooperativity of the Ca2+ binding to the protein as judged by Hill plots of the Ca2+ -induced fluoresence quenching. EPR measurements indicate that there are three high affinity Mn2+ binding sites on human Factor X which can also bind Ca2+. Positive cooperativity was not observed for Mn2+ binding. These data indicate that Ca2+ can cause a conformational change of the Factor X molecule which allows the activation reaction to proceed. We propose that Mn2+ does not support the activation of human Factor X because it cannot induce a necessary conformational change in the absence of Ca2+.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014757 Viper Venoms Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins. Russell Viper Venom,Russell Viper Venoms,Russell's Viper Venom,Russell's Viper Venoms,Viperidae Venoms,Cerastes Venom,Cerastes Venoms,Egyptian Sand Viper Venom,Viper Venom,Viperotoxin,Russells Viper Venom,Russells Viper Venoms,Venom, Cerastes,Venom, Russell Viper,Venom, Russell's Viper,Venom, Viper,Venoms, Cerastes,Venoms, Russell Viper,Venoms, Russell's Viper,Venoms, Viper,Venoms, Viperidae,Viper Venom, Russell,Viper Venom, Russell's,Viper Venoms, Russell,Viper Venoms, Russell's

Related Publications

S Morris, and F A Robey, and D P Kosow
October 1978, Archives of biochemistry and biophysics,
S Morris, and F A Robey, and D P Kosow
September 1974, Biochimica et biophysica acta,
S Morris, and F A Robey, and D P Kosow
November 1976, The Journal of biological chemistry,
S Morris, and F A Robey, and D P Kosow
December 1977, Indian journal of biochemistry & biophysics,
S Morris, and F A Robey, and D P Kosow
January 1976, Methods in enzymology,
S Morris, and F A Robey, and D P Kosow
November 1977, Biochemistry,
S Morris, and F A Robey, and D P Kosow
October 2004, Journal of ethnopharmacology,
S Morris, and F A Robey, and D P Kosow
December 1972, Biochemistry,
S Morris, and F A Robey, and D P Kosow
January 1986, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!