Creatine kinase protein sequence encoded by a cDNA made from Torpedo californica electric organ mRNA. 1984

B L West, and P C Babbitt, and B Mendez, and J D Baxter

Creatine kinase (ATP creatine N-phosphotransferase, EC 2.7.3.2) is important in the maintenance of ATP levels in high energy-requiring tissues such as muscle and brain. A complete understanding of its function requires knowledge of its amino acid sequence. To obtain cDNA clones encoding creatine kinase sequences, a cDNA bank was constructed using mRNA from the electric organ of Torpedo californica and was screened by comparing differential colony hybridization of electric organ and liver-derived 32P-labeled cDNAs. Cloned DNAs have been isolated that can arrest the abundant synthesis of Mr 40,000-43,000 material seen after in vitro translation of electric organ mRNA. One of the clones, CK52g8, was sequenced by the dideoxy M13 method and was found to encode a Mr 42,941 protein, which is 68% homologous to a known partial sequence of rabbit muscle creatine kinase and which has a composition similar to creatine kinases from chicken and rabbit tissues. By contrast, no significant homology was found with the known sequences of kinases that use other substrates. RNA blot hybridization analysis indicated that CK52g8 is complementary to a 1600-base-pair mRNA. Primer extension analysis indicated that CK52g8 is only 5 nucleotides short of a full-length cDNA, implying that it encodes a complete protein sequence. The availability of this complete sequence should be useful in further studies of creatine kinase structure and function using techniques such as site-specific mutagenesis.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014101 Torpedo A genus of the Torpedinidae family consisting of several species. Members of this family have powerful electric organs and are commonly called electric rays. Electric Rays,Torpedinidae,Rays, Electric

Related Publications

B L West, and P C Babbitt, and B Mendez, and J D Baxter
April 1990, Nucleic acids research,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
December 1991, Biochimica et biophysica acta,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
October 1979, The Journal of biological chemistry,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
January 1986, Nature,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
February 2007, Proteomics,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
November 1994, Neuroscience letters,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
October 2002, Protein expression and purification,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
August 1992, Biochemistry international,
B L West, and P C Babbitt, and B Mendez, and J D Baxter
August 1983, The Journal of biological chemistry,
Copied contents to your clipboard!