Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. 1978

J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow

Bone marrow cells from two glucose-6-phosphate dehydrogenase (G-6-PD) heterozygotes with polycythemia vera were cultured to determine whether progenitors which wre not of the polycythemia vera clone were present, and, if present, which cell lines contributed to the increase in erythroid colonies observed in response to added erythropoietin (ESF). To accomplish this, the G-6-PD isoenzyme activity of individual erythroid colonies was determined. All of the erythroid colonies analyzed in cultures without added ESF, contained the G-6-PD isoenzyme type characteristic of the abnormal clone. With higher ESF concentrations in the culture, however, there was an increase in the colonies that were not of the polycythemia vera clone. Analysis of the ratio of the various types of colonies indicated that normal and polycythemia vera cells are capable of responding to ESF in vitro. In selected patients, this technique permits analysis of the ratios of normal to abnormal cells during the course of the disease, in response to therapy and during late complications, such as myelofibrosis or leukemic transformation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D011087 Polycythemia Vera A myeloproliferative disorder of unknown etiology, characterized by abnormal proliferation of all hematopoietic bone marrow elements and an absolute increase in red cell mass and total blood volume, associated frequently with splenomegaly, leukocytosis, and thrombocythemia. Hematopoiesis is also reactive in extramedullary sites (liver and spleen). In time myelofibrosis occurs. Erythremia,Osler-Vaquez Disease,Polycythemia Rubra Vera,Polycythemia Ruba Vera,Primary Polycythemia,Disease, Osler-Vaquez,Erythremias,Osler Vaquez Disease,Polycythemia Ruba Veras,Polycythemia Rubra Veras,Polycythemia, Primary,Polycythemias, Primary,Primary Polycythemias,Ruba Vera, Polycythemia,Ruba Veras, Polycythemia,Vera, Polycythemia Ruba,Vera, Polycythemia Rubra,Veras, Polycythemia Ruba,Veras, Polycythemia Rubra
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
June 1968, The Journal of laboratory and clinical medicine,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
December 2014, Leukemia supplements,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
October 1989, The Journal of clinical investigation,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
March 1972, Blood,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
January 1977, American journal of hematology,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
January 2008, Pediatric blood & cancer,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
March 1968, Annals of the New York Academy of Sciences,
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
January 1969, Folia haematologica (Leipzig, Germany : 1928),
J F Prchal, and J W Adamson, and S Murphy, and L Steinmann, and P J Fialkow
January 1984, Fukuoka igaku zasshi = Hukuoka acta medica,
Copied contents to your clipboard!