A micropuncture study of renal phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism. 1978

N Bank, and W S Su, and H S Aynedjian

Micropuncture studies were carried out in rats to determine changes in tubular transport of phosphate which occur in chronic renal failure and secondary hyperparathyroidism. Rats underwent subtotal nephrectomy (NX) and were fed a low calcium, high phosphorus diet for 3--4 wk. Other groups consisted of normal control animals, normal rats infused with sodium phosphate to raise filtered load of phosphate, subtotal NX rats parathyroidectomized (PTX) on the day of experiment, and normal PTX rats infused with sodium phosphate. It was found that filtered phosphate/nephron is markedly increased in subtotal NX rats due to high single nephron filtration rates, proximal tubular fluid plasma phosphate ratios are less than 1.0, and fractional reabsorption of phosphate is decreased in the proximal tubule. More phosphate was present in the final urine than in surface distal convoluted tubules. Acute PTX in subtotal NX rats resulted in a striking increase in proximal phosphate reabsorption, and urinary phosphate became approximately equal to that remaining in surface distal tubules. Phosphate loading in normal rats reduced fractional reabsorption in the proximal tubule, but urinary phosphate was not greater than that at the end of surface distal tubules. Acute PTX in normal phosphate-loaded animals had no significant effect on proximal tubular phosphate reabsorption. These observations suggest that phosphate homeostasis in chronic renal failure is acheived by inhibition of proximal phosphate reabsorption, counteracting a greatly enhanced intrinsic capacity for reabsorption. In addition, the large amount of urinary phosphate is consistent either with secretion by the collecting ducts or with a disproportionately high contribution by deep nephrons. The changes in phosphate transport are mediated by parathyroid hormone and are completely abolished by acute removal of the hormone.

UI MeSH Term Description Entries
D006962 Hyperparathyroidism, Secondary Abnormally elevated PARATHYROID HORMONE secretion as a response to HYPOCALCEMIA. It is caused by chronic KIDNEY FAILURE or other abnormalities in the controls of bone and mineral metabolism, leading to various BONE DISEASES, such as RENAL OSTEODYSTROPHY. Secondary Hyperparathyroidism,Hyperparathyroidisms, Secondary,Secondary Hyperparathyroidisms
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007676 Kidney Failure, Chronic The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION. ESRD,End-Stage Renal Disease,Renal Disease, End-Stage,Renal Failure, Chronic,Renal Failure, End-Stage,Chronic Kidney Failure,End-Stage Kidney Disease,Chronic Renal Failure,Disease, End-Stage Kidney,Disease, End-Stage Renal,End Stage Kidney Disease,End Stage Renal Disease,End-Stage Renal Failure,Kidney Disease, End-Stage,Renal Disease, End Stage,Renal Failure, End Stage
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration

Related Publications

N Bank, and W S Su, and H S Aynedjian
September 1980, Canadian journal of physiology and pharmacology,
N Bank, and W S Su, and H S Aynedjian
January 1983, Scandinavian journal of urology and nephrology. Supplementum,
N Bank, and W S Su, and H S Aynedjian
January 1981, Annals of clinical and laboratory science,
N Bank, and W S Su, and H S Aynedjian
January 1972, Acta medica Iugoslavica,
N Bank, and W S Su, and H S Aynedjian
April 1995, Nihon rinsho. Japanese journal of clinical medicine,
N Bank, and W S Su, and H S Aynedjian
August 1998, Nephron,
N Bank, and W S Su, and H S Aynedjian
January 1995, Nephron,
N Bank, and W S Su, and H S Aynedjian
December 1991, Nihon rinsho. Japanese journal of clinical medicine,
N Bank, and W S Su, and H S Aynedjian
August 2017, Clinical and experimental nephrology,
N Bank, and W S Su, and H S Aynedjian
May 1992, Hinyokika kiyo. Acta urologica Japonica,
Copied contents to your clipboard!