Long-term regulation of adipocyte glucose transport capacity by circulating insulin in rats. 1978

M Kobayashi, and J M Olefsky

We have tested the idea that the circulating plasma insulin level plays an important role in the long-term regulation, or maintenance, of the cellular glucose transport system, distinct from insulin's ability to acutely accelerate glucose transport. To study this hypothesis, groups of rats were made either hyperinsulinemic or hypoinsulinemic by daily insulin injections, or streptozotocin treatment, respectively. Different levels of hypoinsulinemia were produced by using different doses of streptozotocin (40 and 55 mg/kg). The mean (+/-SE) 9 a.m. plasma insulin level for each experimental group was: hyperinsulinemic animals, 65+/-5 muU/ml; controls, 32+/-3 muU/ml; low dose streptozotocin group, 18+/-3 muU/ml; and high dose streptozotocin group 5+/-2 muU/ml. Isolated adipocytes were prepared from each animal and glucose transport was assessed by measuring the initial rates of uptake of the nonmetabolyzable hexose 2-deoxy glucose. The V(max) and K(m) values for adipocyte glucose transport were calculated from the 2-deoxy glucose uptake data. The results demonstrated that in cells from control animals the V(max) of in vitro adipocyte glucose transport was 7.1+/-0.7 nmol/min per 10(6) cells in the basal state and 22.9+/-0.9 nmol/min per 10(6) cells in the presence of a maximally effective insulin concentration (25 ng/ml) in the buffer. In cells from the experimentally hyperinsulinemic animals these V(max) values were increased to 11.7+/-0.8 and 44.2+/-1.1 nmol/min per 10(6) cells. Using adipocytes from both groups of streptozotocin-treated (high dose, 55 mg/kg; low dose, 40 mg/kg) insulin-deficient diabetic animals, V(max) values were found to be progressively decreased. Thus, in the low dose group, basal-and insulin-stimulated V(max) values were 1.6+/-0.5 and 5.7+/-0.7 nmol/min per 10(6) cells, as compared to values of 0.9+/-0.2 and 1.7+/-0.6 in the high dose group. Thus, when considered as group data a positive relationship was found between circulating plasma insulin levels and adipocyte glucose transport V(max), with increased V(max) values in hyperinsulinemic rats and decreased V(max) values in hypoinsulinemic rats. Furthermore, when the individual data were analyzed, highly significant correlation coefficients were found between the height of the plasma insulin level and both the basal (r = 0.82, P < 0.001) and insulin-stimulated (r = 0.93, P < 0.001) V(max) values. The apparent K(m) for 2-deoxy glucose uptake was the same under all conditions. In conclusion, assuming that the V(max) of transport is some function of the number of glucose transport carriers per cell, then these results support the hypothesis that in addition to acute acceleration of glucose transport, insulin is also an important long-term regulator of the number of available adipocyte glucose transport carriers.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M Kobayashi, and J M Olefsky
April 1986, Diabetes research and clinical practice,
M Kobayashi, and J M Olefsky
December 2023, American journal of physiology. Endocrinology and metabolism,
M Kobayashi, and J M Olefsky
January 1985, International journal of obesity,
M Kobayashi, and J M Olefsky
June 1996, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Kobayashi, and J M Olefsky
March 1985, The Journal of biological chemistry,
M Kobayashi, and J M Olefsky
April 1998, Clinical and investigative medicine. Medecine clinique et experimentale,
Copied contents to your clipboard!