The aim of this study was to determine the role of changes in renal artery pressure (RAP), renal haemodynamics, and tubular reabsorption in mediating the natriuretic and anti-natriuretic actions of angiotensin II (ANG II). In anaesthetized dogs, endogenous ANG II formation was blocked with SQ-14225 and ANG II was infused intravenously at rates of 5-1215 ng/kg/min while RAP was either servo-controlled at the normal level or permitted to increase. When RAP was servo-controlled to prevent a rise in RAP, ANG II infusion at all rates from 5-1215 ng/kg/min decreased urinary sodium excretion (INaV) and fractional sodium excretion (FENa), while increasing fractional reabsorption of lithium (FRLi), an index of proximal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng/kg/min decreased UNaV, and FENam while increasing FRLi and FRDNa greater than However, at 135 ng/kg/min and above UNaV and FENE increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion, compared to the dogs in which RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause anti-natriuresis when RAP is prevented from increasing. The natriuretic effect of high doses of ANG II is caused by increased RAP which decreases fractional sodium reabsorption in proximal and distal tubules and causes slight increase in sodium delivery to the tubules.