Neuronal mechanisms underlying physiological tremor. 1978

J H Allum, and V Dietz, and H J Freund

1. Tremor force was recorded during stationary isometric contractions of intrinsic hand muscles of normal subjects. Subjects maintained a steady force level between their thumb and forefinger for 30 s. The force level varied from weak (0.2 kg) to strong contractions (7 kg). These experimental conditions were the same as those in two preceding studies, where single motor-unit activity (14) and the correlation between the discharges of two simultaneously recorded motor units and physiological tremor (11) have been investigated. 2. Two alterations of the power spectra were observed at successively stronger contractions: increase of tremor amplitude and changes in the shape of the power spectrum. At all force levels, the power spectra of tremor force show the well-known decay of tremor amplitude from the lower to the higher frequencies with a local peak at 6--10 Hz. This peak does not show a significant change with respect to frequency when the force level is varied. It is shifted toward lower frequencies in a pathological condition (Parkinsonism) where the recruitment firing rates of the motor units are significantly lower than in the normal. 3. Higher frequencies (greater than 20 Hz) are barely present in the power spectrum during the very weak contractions. They become significant as the contractions become stronger. 4. The steep decay of the power spectrum toward higher frequencies has a similar slope (--43 dB/decade) as the reduction in amplitude of the unfused part of the muscle contractions with increasing stimulus rates (--38 dB/decade). The cutoff of the power spectrum above 25 Hz parallels the achievement of total fusion of muscle twitches above this rate. 5. The results are consistent with the hypothesis that the power spectrum over the range of 6--25 Hz is mainly caused by the unfused parts of the twitch contractions of motor units firing between recruitment (6--8/s) and total fusion of the twitches (25--30/s). The decline of the power spectrum toward higher frequencies can be explained by mechanical damping, which results from increasing fusion of the twitch contractions. The low-frequency part of the power spectrum is assumed to be the result of the slow force deviations produced by changes in the net output of the motoneuron pool. 6. These assumptions were supported by additional animal experiments where the number and rate of force-producing elements could be controlled. Bundles of ventral root filaments innervating cat soleus and gastrocnemius muscles were stimulated synchronously and asynchronously at a number of different rates. The force output of the strain gauge was recorded, filtered, and analyzed in the same way as the human force records. 7. Stimualtion of one nerve bundle at one fixed frequency led to a sharp peak in the power spectrum at that frequency plus peaks of decreasing height representing the harmonics of the stimulation frequency. The height of the peaks decreased at --37 dB/decade. 8...

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011999 Recruitment, Neurophysiological The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.) Recruitment, Motor Unit,Motor Unit Recruitment,Neurophysiological Recruitment
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J H Allum, and V Dietz, and H J Freund
January 2006, Journal of neurophysiology,
J H Allum, and V Dietz, and H J Freund
July 1967, Neurology,
J H Allum, and V Dietz, and H J Freund
February 1994, Annals of the New York Academy of Sciences,
J H Allum, and V Dietz, and H J Freund
January 2012, Tremor and other hyperkinetic movements (New York, N.Y.),
J H Allum, and V Dietz, and H J Freund
January 1998, Neuroscience letters,
J H Allum, and V Dietz, and H J Freund
June 2012, The Journal of physiology,
J H Allum, and V Dietz, and H J Freund
January 1986, Progress in brain research,
J H Allum, and V Dietz, and H J Freund
October 2000, Progress in neurobiology,
J H Allum, and V Dietz, and H J Freund
April 1988, Trends in neurosciences,
J H Allum, and V Dietz, and H J Freund
March 2004, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
Copied contents to your clipboard!