Purification and comparison of outer membrane protein P2 from Haemophilus influenzae type b isolates. 1983

R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff

Haemophilus influenzae type b isolates have been subdivided based on differences in major outer membrane protein (OMP) profiles resolved on gradient and modified Laemmli sodium dodecyl sulfate-polyacrylamide gel electrophoresis systems. Although 21 subtypes have been observed, 86% of invasive isolates have one of five common subtypes and 71% of isolates have one of three subtypes. In isolates with two of the most common outer membrane subtypes, one major OMP has an apparent molecular weight of 37,000. In isolates with another common OMP subtype, a cross-reactive protein with an apparent molecular weight of 36,500 is observed. All three proteins have been designated P2. Protein P2 from these prototype isolates was solubilized with Zwittergent 3-14 and purified to homogeneity. Based on amino acid compositions, cyanogen bromide cleavage products, staphylococcal V8 protease, and chymotryptic peptide maps, the P2 protein from the three isolates has been highly conserved. Rabbit antibody prepared against P2 from one strain was cross-reactive with P2 isolated from the other two heterologous strains by Western blot. This antibody passively protected infant rats against type b Haemophilus infection caused by the homologous organism, but not against challenge by a strain with the heterologous 36,500 mol wt P2 protein. Thus, although the P2 protein from isolates with different OMP subtypes are closely related, the protection experiments suggest that determinants on the cell surface interacting with protective antibody may be strain or subtype specific.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006192 Haemophilus Infections Infections with bacteria of the genus HAEMOPHILUS. Hemophilus Infections,Haemophilus influenzae Infection,Haemophilus influenzae Type b Infection,Hib Infection,Infections, Haemophilus,Infections, Hemophilus,Haemophilus Infection,Haemophilus influenzae Infections,Hemophilus Infection,Hib Infections,Infection, Haemophilus,Infection, Haemophilus influenzae,Infection, Hemophilus,Infection, Hib
D006193 Haemophilus influenzae A species of HAEMOPHILUS found on the mucous membranes of humans and a variety of animals. The species is further divided into biotypes I through VIII. Bacterium influenzae,Coccobacillus pfeifferi,Haemophilus meningitidis,Hemophilus influenzae,Influenza-bacillus,Mycobacterium influenzae
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
November 1981, The Journal of infectious diseases,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
May 1981, The Journal of infectious diseases,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
December 1989, Molecular microbiology,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
September 1988, Infection and immunity,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
January 1989, Infection and immunity,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
October 1990, Infection and immunity,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
November 1984, Infection and immunity,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
August 2003, Journal of medical microbiology,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
March 1991, Molecular immunology,
R S Munson, and J L Shenep, and S J Barenkamp, and D M Granoff
June 1993, Infection and immunity,
Copied contents to your clipboard!