The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens. 1983

T A Reh, and E Pitts, and M Constantine-Paton

We have examined the detailed order of retinal ganglion cell (RGC) axons in the optic nerve and tract of the frog, Rana pipiens. By using horseradish peroxidase (HRP) injections into small regions of the retina, the tectum, and at various points along the visual pathway, it has been possible to follow labelled fibers throughout their course in the nerve and tract. Several surprising features in the order of fibers in the visual pathway were discovered in our investigation. The fascicular pattern of RGC axons in the retina is similar to that described in other vertebrates; however, immediately central to their entry into the optic nerve head, approximately half of the fibers from the nasal or temporal retina cross over to the opposite side of the nerve. Although the axons from the dorsal and ventral regions of the retina generally remain in the dorsal and ventral regions of the nerve, some fiber crossing occurs in those axons as well. The result of this seemingly complex rearrangement is that the optic nerve of Rana pipiens contains mirror symmetric representations of the retinal surface on either side of the dorsal ventral midline of the nerve. The fibers in each of these representations are arranged as semicircles representing the full circumference of the retina. This precise fiber order is preserved in the nerve until immediately peripheral to the optic chiasm, at which point age-related axons from both sides of the nerve bundle together. Consequently, when a small pellet of HRP is placed in the chiasmic region of the nerve, an annulus of retinal ganglion cells and a corresponding annulus of RGC terminals in the tectum are labelled. As the age-related bundles of fibers emerge from the chiasm they split to form a medial bundle and a lateral bundle, which grow in the medial and lateral branches of the optic tract, respectively. Although the course followed by RGC axons in the visual pathway is complex, we propose a model in which the organization of fibers in the nerve and tract can arise from a few rules of axon guidance. To determine whether the optic tecta, the primary retinal targets, play a role in the development and organization of the optic nerve and tract, we removed the tectal primordia in Rana embryos and examined the order in the nerve when the animals had reached larval stages. We found that the order in the nerve and tract was well preserved in tectumless frogs. Therefore, we propose that guidance factors independent of the target direct axon growth in the frog visual system.

UI MeSH Term Description Entries
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

T A Reh, and E Pitts, and M Constantine-Paton
November 1991, Visual neuroscience,
T A Reh, and E Pitts, and M Constantine-Paton
June 1987, Brain research,
T A Reh, and E Pitts, and M Constantine-Paton
February 1995, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
March 1971, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
October 1997, Neuroscience letters,
T A Reh, and E Pitts, and M Constantine-Paton
May 1989, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
January 1994, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
December 2002, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
August 2000, The Journal of comparative neurology,
T A Reh, and E Pitts, and M Constantine-Paton
December 1977, Journal of comparative and physiological psychology,
Copied contents to your clipboard!