[The primary structure of the alpha-amylase inhibitor Hoe 467A from Streptomyces tendae 4158. A new class of inhibitors]. 1983

H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer

The native or modified alpha-amylase inhibitor Hoe 467A - isolated from the culture medium of Streptomyces tendae 4158 - and overlapping peptides were degraded by the automatic Edman technique. The oxidized or aminoethylated or oxidized and maleoylated inhibitor was digested with trypsin and the native inhibitor with pepsin. Further digestion with Staphylococcus aureus proteinase was also carried out. After peptic digestion two cystin peptides were isolated, which allowed the establishment of the disulfide bonds. The alpha-amylase inhibitor is a polypeptid consisting of 74 amino-acid residues with a molecular mass of 7958 Da. The inhibitor is composed of all naturally occurring amino acids except methionine and phenylalanine and shows no sequence homology to known inhibitors. The clinical and pharmacological importance in respect to the inhibitors ability for inactivation of human salivary and pancreatic alpha-amylase is discussed. Especially the proteinase resistance of the inhibitor enables a clinical application in human (e.g. Diabetes mellitus) per os.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D013302 Streptomyces A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
June 1984, European journal of biochemistry,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
May 1986, Journal of molecular biology,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
December 1992, Bioscience, biotechnology, and biochemistry,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
January 2009, Chembiochem : a European journal of chemical biology,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
September 1989, Journal of bacteriology,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
December 1985, Biological chemistry Hoppe-Seyler,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
December 1986, Journal of molecular biology,
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
May 1983, Lancet (London, England),
H Aschauer, and L Vértesy, and G Nesemann, and G Braunitzer
June 1985, FEBS letters,
Copied contents to your clipboard!