Oxygen dependence of adrenal cortex cholesterol side chain cleavage. Implications in the rate-limiting steps in steroidogenesis. 1984

V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth

The oxygen dependence of cholesterol side chain cleavage to form pregnenolone was measured, using both purified phospholipid vesicle-reconstituted cytochrome P-450scc and rat adrenal mitochondria. At saturating cholesterol and nonlimiting electron supply (via NADPH-adrenodoxin reductase and adrenodoxin) the Km(O2) is low (4 microM). Limitations in the availability of both cholesterol and reductant caused elevations in the observed Km(O2). Pregnenolone synthesis was measured in mitochondria from variously pretreated rats, using a phospholipid-cholesterol dispersion as the source of exogenous substrate. In mitochondria obtained from ether-stressed rats (which elevates adrenocorticotropic hormone) two phases of malate-supported pregnenolone production are seen, a rapid (first 2 min) highly oxygen-dependent phase (Km = 150 microM) and a slow (2-10 min) relatively oxygen-independent phase (Km less than 10 microM). Comparison of side chain cleavage rates with mitochondrial 11 beta-hydroxylation rates at various oxygen concentrations suggests that the rapid phase is limited by the availability of reducing equivalents. In cycloheximide-pretreated ether-stressed rats, only a linear slow rate of pregnenolone production was seen (about 25% of the rate of the slow phase in the ether-stressed group), while in mitoplasts from both groups only a linear rapid rate was seen. Data are consistent with the proposal (Privalle, C. T., Crivello, J. F., and Jefcoate, C. R. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 702-706) that the adrenocorticotropic hormone-regulated cycloheximide-inhibitable rate of cholesterol side chain cleavage is limited by the rate of cholesterol transfer from outer to inner mitochondrial membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013252 Steroid 11-beta-Hydroxylase A mitochondrial cytochrome P450 enzyme that catalyzes the 11-beta-hydroxylation of steroids in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11B1 gene, is important in the synthesis of CORTICOSTERONE and HYDROCORTISONE. Defects in CYP11B1 cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL). CYP11B1,Cytochrome P-450 CYP11B1,Cytochrome P-450(11 beta),Steroid 11-beta-Monooxygenase,11 beta-Hydroxylase,CYP 11B1,Cytochrome P450 11B1,Steroid 11 Hydroxylase,Steroid 11-Hydroxylase,Steroid-11-Hydroxylase,11 beta Hydroxylase,Cytochrome P 450 CYP11B1,Steroid 11 beta Hydroxylase,Steroid 11 beta Monooxygenase

Related Publications

V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
October 1967, European journal of biochemistry,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
November 1959, Archives of biochemistry and biophysics,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
October 1977, Steroids,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
August 1990, Molecular and cellular endocrinology,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
March 1979, Molecular and cellular endocrinology,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
July 1966, Biochemical and biophysical research communications,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
January 1984, Biochemical and biophysical research communications,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
January 1961, The Journal of biological chemistry,
V L Stevens, and T Y Aw, and D P Jones, and J D Lambeth
July 1971, Biochimica et biophysica acta,
Copied contents to your clipboard!