The plasmalemmal vesicular system in striated muscle capillaries and in pericytes. 1984

J Frøkjaer-Jensen

By ultrathin serial sectioning of frog mesenteric capillaries it was recently demonstrated that the many apparently free vesicles in electron microscope (EM) sections of endothelial cells may be artefacts due to conventional (500-700 A thick) sectioning (Frøkjaer-Jensen, 1980). The vesicles were found to be part of two sets of invaginations of the cell surfaces; one set connected to the lumen, the other to the interstitium. The present study extends this view to comprise the vesicle organization in frog striated muscle capillaries. By analysis of the three-dimensional organization of the plasmalemmal vesicles in 21 ultrathin serial sections (120-150 A) of two muscle capillaries it is demonstrated that less than 1% of the about 70% apparently free vesicles seen in conventional thin sections of the same capillaries in fact represent truly free vesicular units. By analysis of 15 conventional EM cross-sections of capillaries from the frog cutaneous-pectoris muscle containing plasmaproteins in high concentration it is furthermore demonstrated that 48% of the total vesicle population connect to the lumen at the time of fixation. This organization of the vesicular system seems incompatible with the concept that macromolecules are transferred across the capillary wall by vesicular transport or by a series of fusions and fissions between individual cytoplasmic vesicles but is compatible with the notion that macromolecules exchange across capillary walls by means of passive processes such as diffusion and convection through rare 'large pores'. The study emphasizes that any attempts to classify vesicles in conventional thin sections as 'luminal', 'cytoplasmic' and 'abluminal' is impossible and may lead to erroneous interpretations of vesicle involvement in transcapillary exchange of macromolecules. The rare occurrence of transendothelial channels compared to the number of vesicle invaginations suggests that the main function of the vesicular system relates to functions other than transport.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Frøkjaer-Jensen
May 1975, The American journal of physiology,
J Frøkjaer-Jensen
May 1971, Journees annuelles de diabetologie de l'Hotel-Dieu,
J Frøkjaer-Jensen
June 1981, Archives of internal medicine,
J Frøkjaer-Jensen
September 1994, Microvascular research,
J Frøkjaer-Jensen
June 1986, The American journal of physiology,
J Frøkjaer-Jensen
January 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde,
Copied contents to your clipboard!