Electrogenic nature of lysosomal proton pump as revealed with a cyanine dye. 1983

S Ohkuma, and Y Moriyama, and T Takano

Studies were carried out on the electrogenicity of the lysosomal proton pump using dipropylthiadicarbocyanine iodide (diS-C3-(5] as a membrane potential probe. Pure lysosome preparations (tritosomes) quenched the fluorescence of diS-C3-(5). The quenching correlated well with the potassium ion diffusion potential (inside negative) generated by K+ with or without valinomycin. The quenching caused by lysosomes was reversed by lipophilic cations, tetraphenylarsonium (TPA) or triphenylmethylphosphonium (TPMP). Mg-ATP also reversed the quenching, which was inhibited by a protonophore, 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF-6847). The properties of the ATP-induced recovery of the quenching were exactly the same as those of ATP-induced acidification, as measured with fluorescein isothiocyanate-dextran (FD) (Ohkuma, S., et al. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2758-2762) and acridine orange (Moriyama, Y., et al. (1982) J. Biochem. 92, 1333-1336), except replacement of the anion by an impermeable one enhanced ATP-induced recovery of quenching, but reduced ATP-induced acidification. Amines which dissipate delta pH across the lysosomal membrane also enhanced the Mg-ATP-induced fluorescence recovery. These results suggest that isolated lysosomes exhibit an inside negative membrane potential, especially in low K+ medium, mostly due to the K+-diffusion potential, and that the Mg-ATP-driven proton pump causes membrane depolarization (in the direction of inside positive). These possibilities were supported by results on the uptake of the radioactive membrane-permeant ions [3H]TPMP and [14C]SCN. The present results provide evidence for the electrogenic nature of the lysosomal proton pump.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011804 Quinolines
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S Ohkuma, and Y Moriyama, and T Takano
September 1983, The Journal of biological chemistry,
S Ohkuma, and Y Moriyama, and T Takano
December 1984, Biochemical Society transactions,
S Ohkuma, and Y Moriyama, and T Takano
October 1987, Proceedings of the National Academy of Sciences of the United States of America,
S Ohkuma, and Y Moriyama, and T Takano
March 1984, FEBS letters,
S Ohkuma, and Y Moriyama, and T Takano
October 1990, Photochemistry and photobiology,
S Ohkuma, and Y Moriyama, and T Takano
April 1985, General physiology and biophysics,
S Ohkuma, and Y Moriyama, and T Takano
September 1989, Plant physiology,
S Ohkuma, and Y Moriyama, and T Takano
January 2019, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
S Ohkuma, and Y Moriyama, and T Takano
December 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!