Extra- and intracellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. 1983

G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner

Dorsal column postsynaptic (DCPS) spinomedullary neurons in the dorsal horn of spinal segments L6-S1 of adult cats anesthetized with sodium pentobarbital were identified by antidromic stimulation of cervical dorsal columns that were dissected free of, and electrically isolated from, the rest of the spinal cord. The neurons were categorized with respect to natural stimulation of their cutaneous receptive fields. An equal number of low-threshold mechanoreceptive and wide-dynamic-range neurons were found. No DCPS neurons could be classified as nociceptive-specific. All neurons received input from low-threshold mechanoreceptors with myelinated axons. There was no evidence that any neurons received monosynaptic input from unmyelinated, primary afferent fibers. The average conduction velocity of the antidromic responses was 45.7 m/s. Nearly half of the DCPS cells showed an antidromic spike followed by synaptically driven responses that were probably evoked by antidromic invasion into the intraspinal collaterals of A-beta primary afferent fibers that ascended the dorsal columns. Intracellularly recorded synaptic responses of DCPS neurons to dorsal column and receptive field stimulation usually consisted of an EPSP with overriding spike potentials followed by a prolonged IPSP whose amplitude decreased markedly as the stimulus frequency was increased in the range of 5 to 30 Hz. The results indicate that DCPS neurons constitute a projection system capable of signaling innocuous and tissue-damaging mechanical stimuli. The DCPS projection may play a role in the modulation of touch and pain perception.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
October 1984, Sheng li ke xue jin zhan [Progress in physiology],
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
February 1986, Brain research,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
September 1985, Scientia Sinica. Series B, Chemical, biological, agricultural, medical & earth sciences,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
November 1987, Neuroscience,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
January 1989, Experimental brain research,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
December 1987, Brain research,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
January 1992, Experimental brain research,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
March 1990, Neuroscience letters,
G W Lu, and G J Bennett, and N Nishikawa, and M J Hoffert, and R Dubner
September 1975, Journal of neurophysiology,
Copied contents to your clipboard!