Abnormal cell relationships in Jimpy mice: electron microscopic and immunocytochemical findings. 1983

F X Omlin, and J J Anders

The mutant mouse strain Jimpy is characterized by a deficiency of myelin formation throughout the C.N.S. The cause of this hypomyelination is unknown. Based on previous reports, astrocytes, axons and oligodendrocytes are all altered, but no single cell type can be unequivocally defined as the primary target. Jimpy and age-matched normal mice were investigated using thin sectioning, freeze-fracturing and immunocytochemistry. We examined optic nerves and cervical spinal cords of Jimpy to determine which cells were morphologically altered during the period which precedes the onset of myelination and which cellular alterations persisted during myelinogenesis. Abnormalities of astrocytes and axons were frequently observed in Jimpy not only during myelination but also in early postnatal development before mature oligodendrocytes were present. The early astrocytic changes included hyperplasia and alterations of both cytoplasm and plasma membrane. An unusually complex network of astrocytic processes divided the axons into very small groups. During myelination, astrocytic processes were found insinuated between the axons and myelin sheath and/or within the myelin lamellae. Immunocytochemical investigations also revealed a complex network of glial fibrillary acidic protein-positive processes in contact with the majority of the axons. At stages prior to myelination axonal alterations were detected. Most of the axons were not in close contact with one another and individual axons had an undulating and irregular course. In areas where axon separation by astrocytic processes occurred, axonal diameters were more variable than the homogeneously sized axons of the normal mice. Our immunocytochemical results at stages during myelination showed not only many myelin basic protein-positive processes around axons in Jimpy but also clearly immunostained myelin sheaths. This indicates that the myelinating glia present not only produce myelin basic protein but can also incorporate it into the myelin spiral. The presented results suggest that the mouse mutant Jimpy could be a model for disturbed cell interactions in the C.N.S. Therefore, the hypomyelination may not be attributed to a defect of a single cell but rather to a deficiency in both macroglial types and, perhaps, the axon as well.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D008297 Male Males
D008816 Mice, Jimpy Myelin-deficient mutants which are from the inbred Tabby-Jimpy strain. Jimpy Mice
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D002493 Central Nervous System Diseases Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord. CNS Disease,Central Nervous System Disease,Central Nervous System Disorder,CNS Diseases,Central Nervous System Disorders
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F X Omlin, and J J Anders
December 1975, Journal of the neurological sciences,
F X Omlin, and J J Anders
July 1974, Journal of neuropathology and experimental neurology,
F X Omlin, and J J Anders
June 2005, The Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi,
F X Omlin, and J J Anders
July 1956, Deutsche medizinische Wochenschrift (1946),
F X Omlin, and J J Anders
January 1959, Archiv fur Geschwulstforschung,
F X Omlin, and J J Anders
January 1962, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie,
F X Omlin, and J J Anders
January 1968, Pathologia et microbiologia,
F X Omlin, and J J Anders
June 1969, Rinsho byori. The Japanese journal of clinical pathology,
F X Omlin, and J J Anders
April 1971, Klinische Wochenschrift,
Copied contents to your clipboard!