Participation of active oxygen species in the induction of DNA single-strand scissions by cadmium chloride in cultured Chinese hamster cells. 1983

T Ochi, and T Ishiguro, and M Ohsawa

A mechanism for the induction of DNA single-strand scissions in cultured Chinese hamster cells by cadmium chloride (CdCl2) was investigated by use of the technique of alkaline elution. Inducibility of DNA single-strand scissions by cadmium was examined under an aerobic or anaerobic culture condition. About 62% of the total cellular DNA was eluted throughout the filter within 10 h of elution time by treatment with 4 X 10(-5) M CdCl2 for 2 h in our usual aerobic medium. In contrast, no difference in elution profiles of DNA was observed between untreated control cells and the cells treated with CdCl2 in the anaerobic medium which was prepared by N2 gas bubbling of aerobic medium for 60 min. Furthermore, elution of DNA from cells treated with cadmium decreased markedly in the presence of superoxide dismutase (SOD) when compared with that in the absence of SOD. Inhibition of the cell growth by cadmium was significantly protected by the presence of SOD in the medium although the cell growth was not restored to the control level. These results indicate that active oxygen species participate in Cd-induced DNA single-strand scissions and also in the growth inhibition of the cells by the metal.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

T Ochi, and T Ishiguro, and M Ohsawa
August 1983, Toxicology letters,
T Ochi, and T Ishiguro, and M Ohsawa
January 1982, Cancer letters,
T Ochi, and T Ishiguro, and M Ohsawa
January 1990, Carcinogenesis,
T Ochi, and T Ishiguro, and M Ohsawa
June 1997, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
T Ochi, and T Ishiguro, and M Ohsawa
January 1989, Chemico-biological interactions,
T Ochi, and T Ishiguro, and M Ohsawa
January 1995, Folia biologica,
T Ochi, and T Ishiguro, and M Ohsawa
April 1972, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Copied contents to your clipboard!