An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat. 1983

K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger

Primary afferent fibers transmitting impulses from slowly adapting (SA) Type I receptors in the glabrous skin of the hind paw of the cat were injected intraaxonally in the spinal cord with horseradish peroxidase (HRP). At the light microscopic level, terminal arborizations were observed in the medial dorsal horn extending up to 6 mm rostrocaudally in and near the seventh lumbar segment. Boutonlike swellings labelled with HRP were distributed in clusters in Rexed's laminae III-VI. There was a tendency for the most dorsal clusters from an individual fiber to be located rostrally and for the most ventral clusters to be located caudally. At the electron microscopic level, a combination of morphometric analysis and serial reconstruction revealed the following: (1) All the boutons labelled with HRP contained predominantly clear, round synaptic vesicles, 40-50 nm in diameter. (2) Labelled boutons (n = 75) had cross-sectional longest dimensions of 1.72 +/- 0.53 micron (Mean +/- S.D.), perimeters of 4.95 +/- 1.52 micron, and areas of 1.18 +/- 0.59 micron 2. Their shapes in section varied from rounded to elongated forms. (3) The sizes of labelled boutons decreased significantly and linearly with depth from lamina IV to VI. The shapes of the bouton cross sections also became rounder with depth in the dorsal horn. (4) About 72% of synaptic contacts associated with HRP-filled boutons were with dendritic spines and shafts; most of these synapses were of the asymmetric type. (5) The remainder (28%) of the appositions were synapselike contacts between labelled boutons and unlabelled structures containing flattened or pleomorphic vesicles, and occasional dense-cored vesicles. (6) We observed no unequivocal axosomatic contacts made by labelled boutons. (7) The lengths of synaptic appositions with dendritic spines (0.46 +/- 0.20 micron) or with dendritic shafts (0.51 +/- 0.18 micron) were significantly greater than the synapselike contacts with vesicle-containing unlabelled structures (0.29 +/- 0.09 micron). (8) Complex neuropilar organization was occasionally seen with labelled boutons as central elements, although simpler organizations were much more common. In summary, HRP-labelled fibers ended predominantly in boutons containing clear, round vesicles forming axospinous and axodendritic synapses.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
July 1984, Quarterly journal of experimental physiology (Cambridge, England),
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
August 2001, Synapse (New York, N.Y.),
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
January 1985, Somatosensory research,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
January 1971, The Journal of physiology,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
April 1978, The Journal of physiology,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
May 1979, Journal of neurophysiology,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
January 1983, Experimental brain research,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
October 1994, The Journal of comparative neurology,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
June 1988, Neuroscience letters,
K Semba, and P Masarachia, and S Malamed, and M Jacquin, and S Harris, and G Yang, and M D Egger
December 1992, The Journal of physiology,
Copied contents to your clipboard!