Kinetic equations and mechanisms for activation and inhibition in enzyme systems. 1983

K J Laidler

The rates of enzyme reactions that are activated or inhibited by added modifiers can in some cases be expressed as a rational function of the first degree, v = (alpha 0 + alpha 1[Q] )/(beta 0 + beta 1 [Q] ) where [Q] is the concentration of the modifier and alpha 0, alpha 1, beta 0, and beta 1 are functions of rate constants and sometimes of the enzyme and substrate concentrations; the behaviour is then said to be linear. Three simple mechanisms that give rise to linear kinetics are examined, and the conditions under which there is activation or inhibition are determined. Sometimes there is a transition from activation to inhibition as the substrate concentration is varied. Definitions of competitive, uncompetitive, and noncompetitive activation are suggested, by analogy with the generally accepted definitions for inhibition. In second-degree activation or inhibition the rate can be expressed as the ratio of two quadratic polynomials with positive coefficients. Ten patterns are then possible for plots of v against [Q], and they may be classified with respect to (i) overall activation or inhibition, (ii) initial (at [Q] leads to 0) activation or inhibition, (iii) terminal (at [Q] leads to oo) activation or inhibition, and (iv) whether there is an initial inflexion. The general case of an n:n rational function is also discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

K J Laidler
January 1978, Biochemistry,
K J Laidler
December 2006, Physical review. E, Statistical, nonlinear, and soft matter physics,
Copied contents to your clipboard!