Is the adenine nucleotide translocator rate-limiting for oxidative phosphorylation? 1978

M Stubbs, and P V Vignais, and H A Krebs

1. The effects of atractyloside and carboxyatractyloside (between 5 and 40mum) on O(2) uptake, glucose synthesis, urea synthesis, the adenine nucleotide content and the intracellular K(+) concentration were measured in isolated hepatocytes. 2. Urea synthesis was much less inhibited than glucose synthesis by both atractylosides. Measurements of intermediary metabolites of carbohydrate metabolism in freeze-clamped liver after injection of atractyloside into rats indicate that inhibition of gluconeogenesis is due to interference at the cytosolic reactions requiring ATP (phosphoenolpyruvate carboxykinase and 3-phosphoglycerate kinase). 3. The decrease in [ATP]/[ADP]x[P(i)] after addition of atractyloside or carboxyatractyloside was restricted to the cytosol. 4. Dihydroxyacetone can be converted either into glucose with the consumption of 2mol of ATP (per mol of glucose) or into lactate with the production of 2mol of ATP. In the presence of high concentrations of atractyloside and carboxyatractyloside more ATP was produced than was used for the synthesis of glucose from dihydroxyacetone, probably for the maintenance of intracellular [K(+)]. 5. When the rates of respiration were altered by changing substrates, the degrees of inhibition of respiration and translocation by a given concentration of the atractylosides were the same, whereas at a given concentration of HCN the degree of inhibition was high at higher initial rates, and low at lower initial rates. 6. Inhibition of a complex series of reactions by atractyloside does not necessarily indicate that the translocator is a rate-limiting step in that sequence as Th. P. M. Akerboom, H. Bookelman & J. M. Tager [(1977) FEBS. Lett.74, 50-54] assume. This point is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Stubbs, and P V Vignais, and H A Krebs
November 1970, Biochimica et biophysica acta,
M Stubbs, and P V Vignais, and H A Krebs
July 1990, Biochimica et biophysica acta,
M Stubbs, and P V Vignais, and H A Krebs
August 1983, Biochimica et biophysica acta,
M Stubbs, and P V Vignais, and H A Krebs
June 1988, Biokhimiia (Moscow, Russia),
M Stubbs, and P V Vignais, and H A Krebs
November 2007, American journal of physiology. Endocrinology and metabolism,
M Stubbs, and P V Vignais, and H A Krebs
July 1994, Biochemical and biophysical research communications,
M Stubbs, and P V Vignais, and H A Krebs
February 1976, Journal of bioenergetics,
M Stubbs, and P V Vignais, and H A Krebs
January 2000, Molecular genetics and metabolism,
Copied contents to your clipboard!