The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. 1978

C C Walker, and M G Yates

H2 will support nitrogenase activity (C2H2 reduction) in Azotobacter chroococcum with or without added carbon substrate. Results show that H2 is metabolised to transfer electrons to nitrogenase and to the respiratory chain to produce ATP. H2-supported nitrogenase activity is most significant at low carbon substrate concentrations, but also occurs at saturating concentration. Continuous cultures of N2-fixing A. chroococcum evolved H2 from nitrogenase under O2-N2- and C-limited conditions. This H2 represented a significant proportion of nitrogenase activity. Hydrogenase activity was consistently high under C-limited conditions, but low or undetectable under O2- and N2-limitations. Pre-treatment with 40 per cent C2H2 inhibited hydrogenase activity in C-limited cultures, and H2 evolution increased under air and under Ar:O2 (4:1) mixtures. We deduce that hydrogenase : I, recycles H2 produced by nitrogenase to provide electrons and energy for N2 reduction: II, supports respiratory protection for nitrogenase under C-limited conditions, and III, does not act to prevent any inhibition of N2 reduction by H2 produced by nitrogenase. A scheme for the H2 cycle in N2-fixing A. chroococcum is proposed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.

Related Publications

C C Walker, and M G Yates
March 1972, Indian journal of experimental biology,
C C Walker, and M G Yates
August 1988, Applied and environmental microbiology,
C C Walker, and M G Yates
January 2004, Zeitschrift fur Naturforschung. C, Journal of biosciences,
C C Walker, and M G Yates
May 1976, Canadian journal of microbiology,
C C Walker, and M G Yates
January 2018, Angewandte Chemie (International ed. in English),
C C Walker, and M G Yates
July 1984, Journal of bacteriology,
Copied contents to your clipboard!