Studies on histone oligomers. V. Reconstitution of chromatin from purified DNA and acid-extracted histones. 1983

S Kawashima, and K Imahori

DNA-histone complexes were reconstituted from DNA and acid-extracted core histones and the products were characterized by micrococcal nuclease digestion to examine whether proper nucleosome structure had been reconstituted. No nucleosome structure was produced starting from the mixture of acid-extracted histones and purified DNA in 2 M NaCl-5 M urea, while the reassociation of chromatin by the same procedures was successful. This was due to the inappropriate conformation of acid-extracted histones, which was preserved in 2 M NaCl even in the presence of 5 M urea. If acid-extracted histones were reannealed from the completely denatured state, such as in 5 M urea, 6 M guanidine hydrochloride or 0.6 M NaCl-5 M urea, reconstitution of nucleosome structure was always successful.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7

Related Publications

S Kawashima, and K Imahori
May 1983, FEBS letters,
S Kawashima, and K Imahori
August 1998, Methods (San Diego, Calif.),
S Kawashima, and K Imahori
January 1974, Texas reports on biology and medicine,
S Kawashima, and K Imahori
October 1975, Molecular biology reports,
S Kawashima, and K Imahori
January 1989, Methods in enzymology,
S Kawashima, and K Imahori
December 2020, Current protocols in molecular biology,
S Kawashima, and K Imahori
May 1974, Science (New York, N.Y.),
S Kawashima, and K Imahori
January 1975, Molekuliarnaia biologiia,
S Kawashima, and K Imahori
January 2017, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!