Post-translational changes of chromosomal proteins in rat cerebellum during postnatal development. 1983

I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida

Acetylation, phosphorylation and methylation of nuclear proteins in rat cerebellum at 10 and 30 days of age were investigated in vitro. Isolated nuclei were incubated in the presence of [1-14C]acetyl CoA, S-adenosyl [methyl-3H]methionine and [gamma-32P]ATP and then separated into histones and non histone proteins (NHP), which were further fractionated by polyacrylamide gel electrophoresis. The results obtained indicate that acetylation, phosphorylation and methylation of both basic and acidic proteins decrease from 10 to 30 days of age. Electrophoretic analysis of histones shows that the decrease mainly concerns H1, H3, and H2b fractions. The H3 fraction is always more labeled than the other fractions and shows the major changes during postnatal development. Phosphorylation of H2a and H4 fractions increases from 10 to 30 days of age, whereas acetylation and methylation of these fractions do not show significant changes from 10 to 30 days. The densitometric and radioactive patterns of NHP show considerable changes between 10 and 30 days, especially in the high molecular weight region. The incorporation of 14C-acetyl and 3H-methyl groups and of 32P phosphate appears to be generalized throughout the molecular weight range and decreases from 10 to 30 days of age. The methylation of an as yet unidentified protein with a molecular weight of approximately 110,000 daltons occurred at both ages.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002868 Chromosomal Proteins, Non-Histone Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens. Non-Histone Chromosomal Proteins,Chromosomal Proteins, Non Histone,Chromosomal Proteins, Nonhistone,Non-Histone Chromosomal Phosphoproteins,Chromosomal Phosphoproteins, Non-Histone,Non Histone Chromosomal Phosphoproteins,Non Histone Chromosomal Proteins,Nonhistone Chromosomal Proteins,Proteins, Non-Histone Chromosomal
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
January 1975, Biochemical Society transactions,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
September 1983, Journal of neurogenetics,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
May 2005, Brain research. Developmental brain research,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
January 1977, Biochimie,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
July 1974, Journal of neurochemistry,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
January 1975, Biochemical Society transactions,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
July 2006, Lasers in surgery and medicine,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
October 1985, Neuroscience letters,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
January 1980, FEBS letters,
I Serra, and M Kamiyama, and G A Hashim, and P Ragonese, and B Lombardo, and A M Giuffrida
September 1988, Neurochemical research,
Copied contents to your clipboard!