3,4-diaminopyridine. A potent new potassium channel blocker. 1978

G E Kirsch, and T Narahashi

3,4-diaminopyridine has been found to act very potently in selectively blocking the potassium channels of squid axon membranes. The apparent dissociation constants for this action are estimated to be 5.8 micron and 0.7 micron for external and internal applications, respectively, the potency being about 50 times higher than that of 4-aminopyridine. The block depends upon the membrane potential, time, and stimulus frequency. 3,4-diaminopyridine shows great promise as a useful tool for the study of membrane ionic channels.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode

Related Publications

G E Kirsch, and T Narahashi
January 2008, Respiratory physiology & neurobiology,
G E Kirsch, and T Narahashi
December 2010, Biochimie,
G E Kirsch, and T Narahashi
February 1996, Biochemical and biophysical research communications,
G E Kirsch, and T Narahashi
December 2006, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
G E Kirsch, and T Narahashi
June 2016, Cardiac electrophysiology clinics,
G E Kirsch, and T Narahashi
April 2016, Toxicon : official journal of the International Society on Toxinology,
G E Kirsch, and T Narahashi
August 2013, Nature reviews. Drug discovery,
Copied contents to your clipboard!