Unitary acitvity of ventrolateral nucleus during placing movement and associated postural adjustment. 1978

A M Smith, and J Massion, and Y Gahéry, and J Roumieu

The activity of neurons in the ventrolateral nucleus of the thalamus (VL) was analyzed in the cat during placing movements of both the right and left forelimbs. The purpose was to determine if thalamic neuron discharge patterns could be related to movement and/or to postural changes. Placing tests were conducted on animals maintained in a standing position and partially restrained by a hammock. Each of the forelimbs rested on a flat surface containing a strain gauge which allowed the stance forces to be measured. Two mobile plates, one on the left and one on the right, were used to elicit a contact placing reaction. The response was composed of an isometric phase, during which the body weight was shifted from the stimulated limb to the opposite forelimb while the stimulated limb was gently pushed backwards, and a movement phase during which the stimulated paw actually accomplished the placing reaction. (1) About half the recorded neurons (47/86) in the VL region demonstrated a change in activity, generally an increase of discharge frequency, during placing of the right of left forelimb. (2) Almost all the reactive units (45/47) responded to contralateral placing. Two units changed their activity with ipsilateral placing only, whereas 18 units were active during placing of both forelimbs. The discharge pattern of cells activated during ipsilateral placing was considered as related to the isometric postural adjustment of the contralateral limbs. (3) Cells reactive during contralateral tests were located preferentially in the ventrolateral part of VL. Units reactive during ipsilateral tests (postural units) were also clustered in the ventrolateral half of VL which is the zone controlling limb musculature. Some of the 'postural units' were identified as receiving afferents from cerebellar nuclei and projecting to motor cortex. (4) Changes in discharge frequency were observed during either the isometric phase, the movement phase, or both. The same type of patterns were observed during contralateral and ipsilateral placing. About half of the cells responding during the contralateral placing movement did so throughout the entire duration of the movement, and were not specifically related to either the flexion or the extension phase of the placing. (5) The timing of the discharge of VL units with respect to the isometric phase and to the movement phase of the motor sequence varied from cell to cell. No topographic arrangement of neurons with the same pattern of discharge could be found within the nucleus.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011187 Posture The position or physical attitude of the body. Postures
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs

Related Publications

A M Smith, and J Massion, and Y Gahéry, and J Roumieu
October 1975, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
January 1980, Experimental brain research,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
June 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
April 2017, Human movement science,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
July 1998, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
January 1990, Experimental brain research,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
October 2011, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
September 1976, Journal of neurophysiology,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
March 1975, Vision research,
A M Smith, and J Massion, and Y Gahéry, and J Roumieu
September 2020, Somatosensory & motor research,
Copied contents to your clipboard!