Regulation of citrate efflux from mitochondria of oleaginous and non-oleaginous yeasts by adenine nucleotides. 1983

C T Evans, and A H Scragg, and C Ratledge

The regulation of mitochondrial citrate metabolism has been investigated in oleaginous and non-oleaginous yeasts to ascertain its importance in controlling the rate of citrate efflux from mitochondria. The following observations were made: 1. Citrate efflux from mitochondria of the oleaginous yeast Candida curvata D, in the presence of L-malate and pyruvate, was stimulated by adding ATP and reduced by AMP. In the non-oleaginous yeast, Candida utilis 359, there was very little stimulation of citrate efflux by ATP but it was reduced by AMP. These effects appeared to be generalized as similar results were obtained in an examination of eight further yeasts (seven oleaginous and one non-oleaginous). 2. The effects of ATP and AMP were not observed in mitochondria whose metabolism had been inhibited by antimycin A and rotenone indicating the direct regulation of the citrate translocase was not involved. 3. In C. curvata D, ATP increased the total mitochondrial citrate content and reduced that of 2-oxoglutarate whereas AMP had the reverse effect. In C. utilis 359, AMP had a similar effect but that of ATP was much smaller. 4. To explain these observations the mitochondrial NAD+-dependent isocitrate dehydrogenase was studied in a number of yeasts. The enzyme from oleaginous yeasts had a requirement for AMP for activity and was inhibited by ATP. In non-oleaginous yeasts the enzyme was active in the absence of AMP and increased in activity as the isocitrate concentration increased. 5. The enzyme in C. curvata D was constantly more sensitive to increasing energy charge than that of the non-oleaginous yeast. These results indicate that the supply of citrate (and hence acetyl-CoA) to the cytosol is controlled by the activity of the intramitochondrial NAD+-dependent isocitrate dehydrogenase which in turn is regulated by adenine nucleotides. The sensitivity of this enzyme to the ATP/AMP ratio during lipogenesis is therefore an important control in the accumulation of lipid by yeasts.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D002951 Citrates Derivatives of CITRIC ACID.
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D015003 Yeasts A general term for single-celled rounded fungi that reproduce by budding. Brewers' and bakers' yeasts are SACCHAROMYCES CEREVISIAE; therapeutic dried yeast is YEAST, DRIED. Yeast

Related Publications

C T Evans, and A H Scragg, and C Ratledge
July 1968, The Journal of biological chemistry,
C T Evans, and A H Scragg, and C Ratledge
November 1985, The American journal of physiology,
C T Evans, and A H Scragg, and C Ratledge
February 2000, Biochemistry. Biokhimiia,
C T Evans, and A H Scragg, and C Ratledge
February 1978, Biochimica et biophysica acta,
C T Evans, and A H Scragg, and C Ratledge
October 1984, Cancer research,
C T Evans, and A H Scragg, and C Ratledge
January 1984, The Journal of biological chemistry,
C T Evans, and A H Scragg, and C Ratledge
January 1982, Comparative biochemistry and physiology. B, Comparative biochemistry,
C T Evans, and A H Scragg, and C Ratledge
June 1982, The Journal of biological chemistry,
C T Evans, and A H Scragg, and C Ratledge
May 1972, European journal of biochemistry,
Copied contents to your clipboard!