Refined structure of the gene 5 DNA binding protein from bacteriophage fd. 1983

G D Brayer, and A McPherson

The three-dimensional structure of the gene 5 DNA binding protein (G5BP) from bacteriophage fd has been determined from a combination of multiple isomorphous replacement techniques, partial refinements and deleted fragment difference Fourier syntheses. The structure was refined using restrained parameter least-squares and difference Fourier methods to a final residual of R = 0.217 for the 3528 statistically significant reflections present to 2.3 A resolution. In addition to the 682 atoms of the protein, 12 solvent molecules were included. We describe here the dispositions and orientations of the amino acid side-chains and their interactions as visualized in the G5BP structure. The G5BP monomer of 87 peptide units is almost entirely in the beta-conformation, organized as a three-stranded sheet, a two-stranded beta-ribbon and a broad connecting loop. There is no alpha-helix present in the molecule. Two G5BP monomers are tightly interlocked about an intermolecular dyad axis to form a compact dimer unit of about 55 A X 45 A X 36 A. The dimer is characterized by two symmetry-related antiparallel clefts that traverse the monomer surfaces essentially perpendicular to the dyad axis. From the three-stranded antiparallel beta-sheet, formed from the first two-thirds of the sequence, extend three tyrosine residues (26, 34, 41), a lysine (46) and two arginine residues (16, 21) that, as indicated by other physical and chemical experiments, are directly involved in DNA binding. Other residues likely to share binding responsibility are arginine 80 extending from the beta-ribbon and phenylalanine 73 from the tip of this loop, but as provided, however, by the opposite monomer within each G5BP dimer pair. Thus, both symmetry-related DNA binding sites have a composite nature and include contributions from both elements of the dimer. The gene 5 dimer is clearly the active binding species, and the two monomers within the dyad-related pair are so structurally contiguous that one cannot be certain whether the isolated monomer would maintain its observed crystal structure. This linkage is manifested primarily as a skeletal core of hydrophobic residues that extends from the center of each monomer continuously through an intermolecular beta-barrel that joins the pair. Protruding from the major area of density of each monomer is an elongated wing of tenuous structure comprising residues 15 through 32, which is, we believe, intimately involved in DNA binding. This wing appears to be dynamic and mobile, even in the crystal and, therefore, is likely to undergo conformational change in the presence of the ligand.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

G D Brayer, and A McPherson
January 1980, Molecular biology, biochemistry, and biophysics,
G D Brayer, and A McPherson
January 1979, Journal of supramolecular structure,
G D Brayer, and A McPherson
November 1979, Journal of molecular biology,
G D Brayer, and A McPherson
March 1975, Nucleic acids research,
G D Brayer, and A McPherson
July 1972, Journal of molecular biology,
G D Brayer, and A McPherson
April 1976, Journal of molecular biology,
G D Brayer, and A McPherson
March 1975, Biochemistry,
Copied contents to your clipboard!