Chromosomal mapping of Xenopus 5S genes: somatic-type versus oocyte-type. 1983

M E Harper, and J Price, and L J Korn

Xenopus 5S RNA genes exhibit a pattern of differential expression during development in which some members (oocyte-type) are transcribed only in oocytes, while others (somatic-type) are expressed in both oocytes and somatic cells. Using cloned DNA probes specific for each gene type, we determined the positions of these genes on Xenopus metaphase chromosomes by in situ hybridization. Somatic-type 5S genes in both X. laevis and X. borealis are located at the distal end of the long arm of only one chromosome (number 9). The oocyte-type 5S RNA genes are found at the distal ends of the long arms of most Xenopus chromosomes, including chromosome 9. Thus, large scale differences in chromosomal location cannot explain the selective expression of these genes, as suggested previously.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic

Related Publications

M E Harper, and J Price, and L J Korn
January 1992, Molecular and cellular biology,
M E Harper, and J Price, and L J Korn
November 1982, Nature,
M E Harper, and J Price, and L J Korn
October 1990, Nucleic acids research,
M E Harper, and J Price, and L J Korn
September 1988, Nucleic acids research,
M E Harper, and J Price, and L J Korn
December 1987, The Journal of biological chemistry,
M E Harper, and J Price, and L J Korn
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!