Improved liquid-chromatographic determination of 3-methoxy-4-hydroxyphenylethyleneglycol in urine with electrochemical detection. 1984

J R Shipe, and J Savory, and M R Wills

In this improved method for quantifying 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in urine, after a multistep extraction of MHPG and internal standard (iso-MHPG) from 3.0 mL of urine, the compounds are separated on a C18 reversed-phase column and quantified by use of an electro-chemical detector. The isocratic chromatographic separation takes about 16 min. The mobile phase is phosphate buffer/acetonitrile (88/12 by vol), the flow rate 0.7 mL/min. Recycling the mobile phase and automating the sample injection make possible the unattended assay of more than 70 samples per day. The within-run precision of the method is excellent (CV 1.8%) at a mean concentration of 1.1 mg/L.

UI MeSH Term Description Entries
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D008734 Methoxyhydroxyphenylglycol Synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Hydroxymethoxyphenylglycol,MHPG,MOPEG,Vanylglycol,4-Hydroxy-3-methoxyphenylethylene Glycol,4-Hydroxy-3-methoxyphenylethyleneglycol,4-Hydroxy-3-methoxyphenylglycol,Methoxyhydroxyphenylglycol, (+)-Isomer,Methoxyhydroxyphenylglycol, (+-)-Isomer,Methoxyhydroxyphenylglycol, (-)-Isomer,4 Hydroxy 3 methoxyphenylethylene Glycol,4 Hydroxy 3 methoxyphenylethyleneglycol,4 Hydroxy 3 methoxyphenylglycol
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006018 Glycols A generic grouping for dihydric alcohols with the hydroxy groups (-OH) located on different carbon atoms. They are viscous liquids with high boiling points for their molecular weights.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000928 Antidepressive Agents Mood-stimulating drugs used primarily in the treatment of affective disorders and related conditions. Several MONOAMINE OXIDASE INHIBITORS are useful as antidepressants apparently as a long-term consequence of their modulation of catecholamine levels. The tricyclic compounds useful as antidepressive agents (ANTIDEPRESSIVE AGENTS, TRICYCLIC) also appear to act through brain catecholamine systems. A third group (ANTIDEPRESSIVE AGENTS, SECOND-GENERATION) is a diverse group of drugs including some that act specifically on serotonergic systems. Antidepressant,Antidepressant Drug,Antidepressant Medication,Antidepressants,Antidepressive Agent,Thymoanaleptic,Thymoanaleptics,Thymoleptic,Thymoleptics,Antidepressant Drugs,Agent, Antidepressive,Drug, Antidepressant,Medication, Antidepressant

Related Publications

J R Shipe, and J Savory, and M R Wills
June 1980, Chemical & pharmaceutical bulletin,
J R Shipe, and J Savory, and M R Wills
July 1983, Analytical chemistry,
J R Shipe, and J Savory, and M R Wills
December 1984, Journal of chromatography,
J R Shipe, and J Savory, and M R Wills
May 1982, Clinica chimica acta; international journal of clinical chemistry,
J R Shipe, and J Savory, and M R Wills
January 1981, Journal of chromatography,
Copied contents to your clipboard!