The effects of ionizing radiation on cell cycle progression in ataxia telangiectasia. 1984

M D Ford, and L Martin, and M F Lavin

Although ataxia telangiectasia (AT) cells are more sensitive than normal cells to killing by ionizing radiation, their DNA synthesis is more resistant to inhibition by radiation. It was thought that this anomaly in DNA synthesis was likely to perturb cell cycle progression. Flow cytometry and the fraction of labelled mitoses (FLM) were used to investigate effects of irradiation in normal and AT cell lines. The FLM indicated that radiation apparently induced a longer G2 delay in normal cells than in AT cells. However, flow cytometry showed that radiation induced much larger and more prolonged increases in the proportion of G2 cells in AT than in normals. AT populations also showed much larger postirradiation decreases in viable cell numbers. These data suggest that a large proportion of the radiosensitive AT cells are not reversibly blocked in G2 but die there, and never proceed through mitosis. The less radiosensitive normal cells are delayed in G2 and then proceed through mitosis. We suggest that the apparently shorter radiation-induced mitotic delay seen in AT cells by FLM is not real but is an artifact arising from perturbation of steady state conditions by selective elimination of a particular cohort of AT cells. Accumulation of AT cells in G2 is compatible with radiosensitivity of these cells and may arise from a defect in DNA repair or an anomaly in DNA replication.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008940 Mitotic Index An expression of the number of mitoses found in a stated number of cells. Index, Mitotic,Indices, Mitotic,Mitotic Indices
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001260 Ataxia Telangiectasia An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23). Louis-Bar Syndrome,Ataxia Telangiectasia Syndrome,Ataxia-Telangiectasia,Telangiectasia, Cerebello-Oculocutaneous,Louis Bar Syndrome,Syndrome, Ataxia Telangiectasia,Syndrome, Louis-Bar

Related Publications

M D Ford, and L Martin, and M F Lavin
April 1994, Radiation research,
M D Ford, and L Martin, and M F Lavin
June 1995, Radiation and environmental biophysics,
M D Ford, and L Martin, and M F Lavin
November 1994, Journal of the National Cancer Institute,
M D Ford, and L Martin, and M F Lavin
August 1980, Nucleic acids research,
M D Ford, and L Martin, and M F Lavin
February 1994, International journal of radiation biology,
M D Ford, and L Martin, and M F Lavin
April 1986, Cancer research,
M D Ford, and L Martin, and M F Lavin
March 1986, Mutation research,
Copied contents to your clipboard!