The solubility of cholesterol and its exchange between membranes. 1984

K R Bruckdorfer, and M K Sherry

It has been proposed that exchange between membrane cholesterol pools occurs by desorption of molecules into the aqueous environment rather than by formation of a transitory collision complex between the membranes. The rate of exchange is likely to be determined by the rate of dissociation of cholesterol from the membrane bilayer and by the concentration of cholesterol monomers or aggregates of cholesterol molecules in solution. The aim of this study was to measure the effects of agents known to increase cholesterol exchange rates on cholesterol solubility, critical micellar concentration and on the activation energy of exchange. A comparison was also made with regard to these parameters, of the exchange of cholesterol to that of 4-cholesten-3-one, another steroid which exchanges more rapidly than cholesterol. Acetone and dimethylsulphoxide increased cholesterol exchange between liposomes and erythrocytes, but only modestly increased the apparent solubility of cholesterol in saline and had no effect on the activation energy of the exchange process. However, acetone and dimethylsulphoxide increased the critical micellar concentration of the cholesterol 3-fold, although tetraethylammonium iodide, which had a smaller effect on exchange, did not. 4-Cholesten-3-one had a lower solubility and critical micellar concentration than that of cholesterol, but had the same activation energy for exchange. It is concluded that the apparent solubility of steroid aggregates are unlikely to determine the rate of exchange, but that agents which substantially increase exchange also increase the critical micellar concentration. The low critical micellar concentration of cholestenone suggests that the actual monomer concentration in an exchange system is low and that the rate of dissociation of the molecules from the liposomes must determine the exchange rate. This is not reflected in the activation energy measurements since these are a composite of all the elements of the exchange process.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D002783 Cholestenones CHOLESTENES with one or more double bonds and substituted by any number of keto groups.
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

K R Bruckdorfer, and M K Sherry
May 1987, Israel journal of medical sciences,
K R Bruckdorfer, and M K Sherry
December 1984, Biophysical journal,
K R Bruckdorfer, and M K Sherry
December 1969, Minerva ginecologica,
K R Bruckdorfer, and M K Sherry
January 1973, Sub-cellular biochemistry,
K R Bruckdorfer, and M K Sherry
September 1977, Biochimica et biophysica acta,
K R Bruckdorfer, and M K Sherry
May 1979, Biochimica et biophysica acta,
K R Bruckdorfer, and M K Sherry
December 1868, Buffalo medical and surgical journal,
Copied contents to your clipboard!