Responses of striatal neurons in the behaving monkey. 2. Visual processing in the caudal neostriatum. 1984

W Caan, and D I Perrett, and E T Rolls

The activity of single neurons was recorded in the tail of the caudate nucleus and adjoining part of the ventral putamen, which receive projections from the inferior temporal visual cortex, in order to investigate the functions of these regions. Of 195 neurons analyzed in two macaque monkeys, 109 (56%) responded to visual stimuli, with latencies of 90-150 ms for the majority of the neurons. The neurons responded to a limited range of complex visual stimuli, and in some cases responded to simpler stimuli such as bars and edges. Typically (in 75% of cases) the neurons habituated rapidly, within 1-8 exposures, to each visual stimulus, but remained responsive to other visual stimuli with a different pattern. This habituation was orientation specific, in that the neurons responded to the same pattern shown in an orthogonal orientation. The habituation was also relatively short-term, in that at least partial dishabituation to one stimulus could be produced by a single intervening presentation of a different visual stimulus. These neurons were relatively unresponsive in a visual discrimination task, having habituated to the stimuli which had been presented in the task on many previous trials. It is suggested on the basis of these results and other studies that these neurons are involved in pattern-specific habituation to repeated visual stimuli, and in attention an orientation to a changed visual stimulus pattern. Changes in attention and orientation to stimuli as a result of damage to the striatum and its afferent and efferent pathways may arise in part because of damage to neurons with responses of this type.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D011699 Putamen The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS. Nucleus Putamen,Nucleus Putamens,Putamen, Nucleus,Putamens,Putamens, Nucleus
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006185 Habituation, Psychophysiologic The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation. Habituation (Psychophysiology),Habituation, Psychophysiological,Psychophysiologic Habituation,Psychophysiological Habituation,Habituations (Psychophysiology)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions

Related Publications

W Caan, and D I Perrett, and E T Rolls
September 1977, Journal of neurophysiology,
W Caan, and D I Perrett, and E T Rolls
February 1983, Behavioural brain research,
W Caan, and D I Perrett, and E T Rolls
November 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Caan, and D I Perrett, and E T Rolls
September 1981, Brain research,
W Caan, and D I Perrett, and E T Rolls
October 1985, Journal of neurophysiology,
W Caan, and D I Perrett, and E T Rolls
January 1991, Electroencephalography and clinical neurophysiology,
W Caan, and D I Perrett, and E T Rolls
January 1987, The Journal of comparative neurology,
W Caan, and D I Perrett, and E T Rolls
October 2002, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
W Caan, and D I Perrett, and E T Rolls
July 1972, Journal of neurophysiology,
Copied contents to your clipboard!