Synthesis of 3-hydroxy-2- and -4-pyridone nucleosides as potential antitumor agents. 1984

D T Mao, and J S Driscoll, and V E Marquez

The ribo- and arabinofuranosyl nucleosides of antitumor active 2- and 4-pyridones 1a and 2a were prepared by direct condensation of the silylated bases with either 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (4a) or 2,3,5-tri-O-benzyl-1-p-nitrobenzoyl-D-arabinofuranose (7) in the presence of trimethylsilyl triflate (Me3SiOTf). In the case of the arabinofuranosyl nucleosides, separation of the alpha and beta anomers was accomplished at the stage of O-benzyl-protected compounds (8b + 9b, and 10b + 11b) after chemical functionalization of the 3-hydroxy group of the pyridone aglycons with acetyl and benzyl groups, respectively. Deblocking of the protected ribo- and arabinofuranosyl nucleosides was performed by the standard methods. In vitro activity against P-388 cells in culture indicated that the 4-pyridone riboside 6d was the most active member of the series with a twofold lower ID50 than the parent pyridone 2a. However, this and all the other compounds tested in this series showed no activity against the in vivo model system of murine P-388 leukemia at doses ranging from 25 to 400 mg/kg qd 1-5.

UI MeSH Term Description Entries
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001087 Arabinonucleosides Nucleosides containing arabinose as their sugar moiety. Arabinofuranosylnucleosides
D012263 Ribonucleosides Nucleosides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed)
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

D T Mao, and J S Driscoll, and V E Marquez
September 1980, Journal of pharmaceutical sciences,
D T Mao, and J S Driscoll, and V E Marquez
January 2009, Chemistry Central journal,
D T Mao, and J S Driscoll, and V E Marquez
September 2007, European journal of medicinal chemistry,
D T Mao, and J S Driscoll, and V E Marquez
April 2000, Nucleosides, nucleotides & nucleic acids,
D T Mao, and J S Driscoll, and V E Marquez
May 2000, European journal of medicinal chemistry,
D T Mao, and J S Driscoll, and V E Marquez
September 2013, European journal of medicinal chemistry,
D T Mao, and J S Driscoll, and V E Marquez
January 1991, Nucleic acids symposium series,
Copied contents to your clipboard!