Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. 1984

J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen

Resonances for the ketone bodies 3-D-hydroxybutyrate, acetone and acetoacetate are readily detected in serum, plasma and urine samples from fasting and diabetic subjects by 1H n.m.r. spectroscopy at 400 MHz. Besides the simultaneous observation of metabolites, the major advantage of n.m.r. is that little or no pretreatment of samples is required. N.m.r. determinations of 3-D-hydroxybutyrate, acetoacetate, lactate, valine and alanine were compared with determinations made with conventional assays at six 2-hourly intervals after insulin withdrawal from a diabetic subject. The n.m.r. results closely paralleled those of other assays although, by n.m.r., acetoacetate levels continued to rise rather than reaching a plateau 4h after insulin withdrawal. The 3-D-hydroxybutyrate/acetoacetate ratio in urine during withdrawal gradually increased to the value observed in plasma (3.0 +/- 0.2) as determined by n.m.r. The acetoacetate/acetone ratio in urine (17 +/- 6) was much higher than in plasma (2.5 +/- 0.7). Depletion of a mobile pool of fatty acids in plasma during fasting, as seen by n.m.r., paralleled that seen during insulin withdrawal. These fatty acids were thought to be largely in chylomicrons, acylglycerols and lipoproteins, and were grossly elevated in plasma samples from a non-insulin-dependent diabetic and in cases of known hyperlipidaemia.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females

Related Publications

J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
April 1995, Applied biochemistry and biotechnology,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
April 1990, The New England journal of medicine,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
July 1998, Clinical chemistry,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
January 1990, Journal of pharmaceutical and biomedical analysis,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
January 1993, Nephron,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
February 1991, Biochimica et biophysica acta,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
January 1994, Methods in enzymology,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
December 2021, Animal bioscience,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
August 1984, Journal of biochemistry,
J K Nicholson, and M P O'Flynn, and P J Sadler, and A F Macleod, and S M Juul, and P H Sönksen
January 2008, Journal of biochemical and molecular toxicology,
Copied contents to your clipboard!