Morphine-initiated migrating myoelectric complexes in the fed state in dogs. 1984

S K Sarna, and R E Condon

The ingestion of a meal in nonruminants disrupts the cycling of migrating myoelectric complexes for several hours. We investigated the initiation of phase III activity during the postprandial state by morphine. Small intestinal recordings were made from 5 dogs by surgically implanted electrodes. Morphine boluses (5-400 micrograms/kg) were given during the fasted state and after a meal. Morphine initiated premature phase III activity in the fasted state and it also initiated phase III activity in the postprandial state. Motilin did not initiate phase III activity in the postprandial state. The mean durations of morphine-initiated phase III activity in the fasted state and in the postprandial state were not significantly different from that of spontaneous phase III activity; however, morphine-initiated phase III activity in both the fasted and fed states migrated faster than spontaneous phase III activity in the proximal half of small intestine but not in the distal half. The latent period for the initiation of phase III activity was significantly greater 20-40 min after the meal than 2 h after the meal. The minimum dose of morphine required to initiate phase III activity in the fed state decreased progressively after the initial increase until it reached fasted levels 7-10 h after the meal. Spontaneous phase III activity appeared after this period. We conclude that (a) morphine temporarily overcomes the disruption of migrating myoelectric complex cycling after a meal; (b) morphine acts at different sites than motilin to initiate phase III activity; (c) the increased refractoriness of migrating myoelectric complex cycling mechanisms after a meal may play a role in the disruption of migrating myoelectric complex cycling.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009037 Motilin A peptide of about 22-amino acids isolated from the DUODENUM. At low pH it inhibits gastric motor activity, whereas at high pH it has a stimulating effect.
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

S K Sarna, and R E Condon
June 1982, The American journal of physiology,
S K Sarna, and R E Condon
January 1989, The American journal of physiology,
S K Sarna, and R E Condon
November 1985, The American journal of physiology,
S K Sarna, and R E Condon
August 1988, Sheng li xue bao : [Acta physiologica Sinica],
S K Sarna, and R E Condon
July 1981, The Journal of physiology,
S K Sarna, and R E Condon
July 1981, The American journal of physiology,
S K Sarna, and R E Condon
January 1982, The American journal of physiology,
S K Sarna, and R E Condon
October 1984, Quarterly journal of experimental physiology (Cambridge, England),
S K Sarna, and R E Condon
November 1996, American journal of veterinary research,
Copied contents to your clipboard!